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Introduction 

Positron emission tomography (PET) has long been a 
cornerstone in neuroimaging for its ability to 
visualize and quantify physiological processes at the 
molecular level. Its applications span the diagnosis, 
monitoring, and research of a wide range of 
neurological and psychiatric disorders, from 
Alzheimer’s disease to schizophrenia. Recent 
advancements in artificial intelligence (AI), 
particularly in machine learning and deep learning, 
have revolutionized the way PET neuroimaging data 
are processed, analyzed, and interpreted. AI 
techniques are capable of extracting subtle, high-
dimensional patterns from PET scans that may be 
imperceptible to human experts, thus enabling earlier 
diagnosis, more precise disease characterization, and 
personalized treatment planning. These developments 
are fostering a paradigm shift in neuroimaging, where 
computational intelligence complements human 
expertise to improve both research and clinical 
outcomes [1]. 

One of the most significant contributions of AI to 
PET neuroimaging lies in automated image 
reconstruction and noise reduction. PET inherently 
suffers from low spatial resolution and high noise 
levels compared to other neuroimaging modalities. 
Traditional image reconstruction methods, such as 

filtered back projection and iterative algorithms, can 
be computationally intensive and limited in their 
ability to recover fine details. Deep learning-based 
reconstruction methods, including convolutional 
neural networks (CNNs) and generative adversarial 
networks (GANs), have shown remarkable 
improvements in image quality. These models can 
learn complex mappings from raw PET data to high-
quality images, reducing acquisition time and 
radiation dose while maintaining diagnostic accuracy. 
AI-based denoising techniques also enable clearer 
visualization of small brain structures, enhancing the 
detection of early pathological changes [2]. 

AI has also advanced the quantitative analysis of PET 
neuroimaging, which is crucial for measuring 
biomarkers such as glucose metabolism, amyloid-
beta deposition, tau pathology, and neurotransmitter 
receptor binding. Automated segmentation 
algorithms powered by deep learning can accurately 
delineate brain regions of interest, replacing or 
augmenting traditional atlas-based approaches. These 
models can adapt to individual anatomical variations 
and pathological changes, allowing for more reliable 
biomarker quantification. Furthermore, AI enables 
the integration of PET data with complementary 
modalities such as structural MRI or diffusion 
imaging, improving localization and interpretation of 
metabolic and molecular alterations. Multimodal 
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fusion techniques powered by AI can uncover novel 
relationships between structural and functional 
changes, aiding in the identification of disease-
specific patterns that may serve as diagnostic or 
prognostic indicators [3]. 

In the realm of clinical applications, AI-driven PET 
neuroimaging has shown particular promise in the 
early diagnosis and prognosis of neurodegenerative 
diseases. For Alzheimer’s disease, machine learning 
models trained on amyloid and tau PET data can 
distinguish between healthy aging, mild cognitive 
impairment, and early Alzheimer’s with high 
accuracy. Predictive models can also estimate the 
likelihood of disease progression, assisting in clinical 
decision-making and patient counseling. In 
movement disorders such as Parkinson’s disease, AI 
can enhance the interpretation of dopaminergic PET 
imaging, enabling more precise differentiation 
between Parkinson’s and atypical parkinsonian 
syndromes. In psychiatric disorders like major 
depression and schizophrenia, AI analysis of PET 
tracers targeting neurotransmitter systems has 
provided insights into altered neurochemistry and 
treatment response prediction, paving the way for 
more personalized therapeutic strategies [4]. 

Despite its transformative potential, the application of 
AI in PET neuroimaging faces several challenges. A 
major limitation is the availability of large, high-
quality annotated datasets for training robust AI 
models, particularly for rare neurological and 
psychiatric conditions. Data harmonization across 
imaging centers is critical to mitigate variability in 
PET acquisition protocols, scanner hardware, and 
tracer kinetics. Another challenge lies in the 
interpretability of AI models, especially deep 
learning systems, which are often perceived as 
“black boxes.” Developing explainable AI 
methods that can provide transparent and 
biologically meaningful justifications for their 
predictions is essential for clinical adoption. 
Furthermore, rigorous validation on independent 
datasets, prospective clinical trials, and regulatory 
approval processes are necessary to ensure the 

reliability and safety of AI-driven PET applications 
in real-world settings [5]. 

Conclusion 

Artificial intelligence is transforming PET 
neuroimaging by enhancing image quality, 
automating quantitative analysis, and enabling early 
detection and precise characterization of neurological 
and psychiatric disorders. Through innovations in 
deep learning-based reconstruction, denoising, 
segmentation, and multimodal data integration, AI is 
expanding the diagnostic and research potential of 
PET. These advancements are fostering personalized 
approaches to treatment and improving our 
understanding of disease mechanisms at the 
molecular level. While challenges related to data 
availability, harmonization, interpretability, and 
clinical validation remain, ongoing research and 
collaboration between AI developers, neuroimaging 
scientists, and clinicians are steadily addressing these 
barriers. As AI technologies continue to mature, they 
are poised to become integral to PET neuroimaging 
workflows, driving new discoveries and improving 
patient care in neurology and psychiatry. 
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