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Introduction
Wave is a Japanese word with the English translation, "harbor 
wave". Addressed by two characters, the best character, "tsu" 
suggests harbor, while the base character, "nami" implies 
"wave." previously, tsunamis were currently insinuated as 
"tidal waves" by the general populace, and as "seismic sea 
waves" by standard scientists. The articulation "tidal wave" is 
a misnomer; even though a tsunami's impact upon a coastline is 
poor upon the tidal level at the time a deluge strikes, tsunamis 
are detached to the tides. Tides result from the imbalanced, extra 
natural, gravitational effects of the moon, sun, and planets. The 
articulation "seismic sea wave" is moreover tricky. "Seismic" 
recommends a tremor related age framework, anyway a 
downpour can in like manner be caused by a no seismic event, 
for instance, a torrential slide or meteorite influence.

Methodology
Methods for numerical simulation of tsunami wave propagation 
in deep and shallow seas are well developed and furthermore, 
utilized by numerous researchers [1-8]. We simply provide the 
mathematical framework of Haar wavelet method and MOL 
for a non-linear tsunami model of coupled partial differential 
equations (PDEs).

Solution of Tsunami equation

The correct arrangement has been stood out from the MOL 
arrangements just when the variable ocean profundity H(x) is 
equivalent to the ocean profundity in the vast sea (d). At that 
point the impact of increment the slant, the profundity of the 
water and the wave stature on the speed of tidal wave and the rise 
have been considered. At the point when a torrent approaches a 
coastline, the wave starts to back off and increment in tallness 
relying upon the geology of the ocean depths.

This paper presents two strategies for getting the answers for a Non-Linear Tsunami Model of 
Coupled Partial Differential Equations. The first is the Haar Wavelet technique (HWM). The 
second technique is the method of lines (MOL). The numerical consequences of the MOL are 
contrasted and the after effects of the HWM. To demonstrate the unwavering quality of the 
considered techniques we have contrasted the gotten arrangements and the correct ones. The 
outcomes uncover that the two techniques are powerful and helpful for settling such sorts of 
halfway differential conditions, however the strategy for lines gives less precise outcomes over 
the other strategy.
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Solving Tsunami equation using the MOL:  Consider the 
instance of the run-up of 2D long wave's occurrence upon a 
uniform inclining shoreline associated with a vast sea of uniform 
profundity (Figure 1). The traditional nonlinear shallow-water 
conditions are [6]:

0t x xu uu gη+ + =

(u(H )) 0t xη η+ + = 				                    (1)

where as shown in Figure 1.

u(x, t): is tsunami velocity; η(x, t): is surface elevation (wave 
amplitude)

H(x) is the variable sea depth; g:  is the acceleration due to 
gravity g=9.8m/s2

x: is the horizontal distance; 

t: is the time;

The initial conditions can be written as
2

3

3( ,0) *sec
4

hx h h x
d

η =

( ,0) gu x
d

η= 	   			                 (2)

Where, h: is an initial wave height; d: is the sea depth in the 
open ocean.

The exact solutions occur only when H(x) = d they are:
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The system (1) has no exact solution when H(x) is variable. So, 
we will solve this system for three different function of H(x) in 
the form H(x) = ax + 300 which H(x) = 0.5x + 300, H(x) = x + 
300 and H(x) = 2x + 300 to show the effect of the slop (a) on the 
run-up heights and the velocity of tsunami wave.
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Tsunamis stages are: the first is formation, the second is mid-
ocean propagation, and last is breaking and run-up on the beach.

Let x, t be the independent variables and u1, u2, u3, … … . un, 
η1, η2, η3, …. ηm  be the dependent variables associated with a 
system of PDEs. The general form of a system of PDEs having 
1st order time derivatives and 1st order space derivatives may be 
written as follows:

( ) ( , ) 1(1)i
i i

du t f u i N
dt

η= ∀ = 	 	                                 (4)

( ) ( , , ) 1(1) Mm
m i m

d t f u h m
dt
η η= ∀ = 	 	                                (5)

Each ODE of the systems (4, 5), along with current values of the 
dependent variables as the initial conditions, may be solved by 
using any of the standard methods to compute the values of the 
dependent variables. We utilize the classical 4th order Runge-
Kutta method. Equations (4, 5) can be rewritten as:
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Thus, we have the system of differential equations of one 
independent variable t. This system can be easily solved by 
using fourth order Runge–Kutta scheme.

1 1 2 3 4( 2 2 ) ,
6
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As done before we have solved Equation (8) using MOLI then 
we present a comparison between the MOLI results with the 
exact solution when H(x) = d as shown in Figure 2. It seems 
that the absolute errors are small at t = 0.5 and increase with 
increasing the time as shown in Figures 3 and 4.

Analysis of Tsunami equation using the MOL: Tsunami waves 
were generated with different wave height and depth at different 
period. It can be observed that an increase in slope causes adecrease 
in wave height and when the wave height increase the wave length 
decrease as shown in Figures 5-14. We not that the period didn’t 
change the properties of the Tsunami wave. Figures 12-14 implies 
that as the depth of the water decrease the velocity of tsunami 
increase so in the deep ocean Tsunami have very small amplitude 
(wave height) and the wave height increase as the depth decrease.  
Figures 15-20 implies that for a constant height (H(x) = d) when 
the depth increases the velocity decrease and the elevation 
become constant.

Solution of Tsunami equation using HWM

Haar wavelet method: The Haar wavelet is are a symmetrical 
capacity of exchanged rectangular waveforms where amplitudes 
can be unique in relation to one capacity to another and defined 
over the interim [0,1] as pursues:
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Where  0.5, ,k k
m m

ς β +
= = and 

1k
m

γ +
=

The integer m = 2j where j = 0, 1, 2, …, J, denote the wavelet 
level, and k = 0, 1, 2, …, m - 1 is denote the translation 

h

d

η(x,1)

H(x)
x

Figure 1. The one-dimensional problem of Tsunami run-up on a shore.
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Figure 3. The absolute error (AE) between the exact solution and the MOLI solution  for tsunami equation at what constants at t=0.5, 2 and 4.
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Figure 2. Comparison of MOLI (dotted line) and exact (solid line) solutions at N =1600, h=2, H(x)=d=20 and t=0, 0.5, 2 and 4.
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Figure 5. Graph of elevation η at shore slope 2.
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Figure 6. Graph of elevation η at shore slope 1.
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Figure 4. Graph of velocity u at shore slope 2.
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Figure 8. Graph of elevation η at shore slope 0.5.
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Figure 9. Graph of velocity u at various H(x) and t=1.
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Figure 7. Graph of velocity u at shore slope 0.5.
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Figure 11. Graph of velocity u at various sea depths at t =1.5.
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Figure 14. Graph of velocity u at shore slope 2 and various values of sea depth in open ocean at t =1.5.
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Figure 15.  Graph of elevation η at shore slope 2 and various values of sea depth in open ocean at t =1.5.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

u

0                                    100                                    200                                  300
x

d=10 ,       .     d=15  ,     x    d=20  

Figure 13. Graph of velocity u at shore slope 2 and various values of sea depth in open ocean at t =1.5.
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Figure 18. Graph of elevation η at various values of sea depth in open ocean at h=2 and t=0.

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

u

0                                            100                                         200                                          300
x

d=10 ,      .       d=15  ,      x    d=20  

Figure 16. Graph of velocity u at various values of sea depth in open ocean at h=2 and t=1.5.
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Figure 20. Comparison of MOLI (dotted line) and exact (solid line) solutions of Eq. (1) at N=1600, h=2, d=20 and t =2, 4 and 6 solutions for η.

parameter. Resolution level known as the integer J. The index i 
is established according to the formula i = m + k +1. In case of 
the values m = 1, k = 0. We own i = 2; The value of  in is µ = 2M 
= 2J + 1. Assume we define the collocation points 0.5

2l
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M
−

= , with l 

= 1, 2, …, 2M and the Haar function hi(x). The Haar coefficient 
matrix is known as HAAR(i, l) = hi(xl) which is a square matrix 
2M × 2M. 

Method of solution: We can assume that H, L2 [0, 1) is a Hilbert 
space with the inner product defined by 1

0
( ), ( ) ( )Tf x h f x h x dx= ∫

Since V is a finite-dimensional subspace of H, it is closed and 
convex. Thus, for w ε H, there are a unique approximation out 
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where the Haar wavelet method coefficients are given by 
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where µ = 2M = 2j+1, C and h(x) are 1 × 2M matrices given by:

1 2 3 2[ , , ,......, ],MC c c c c= ( ) 1 2 22 ( ) [ ( ) ( ) ... ( )]MMh x h x h x h x= (13)

Multiplication of Haar wavelet method: It is important to 
assess the product of h(µ)(x) and hT

(µ)(x), that is called the product 
matrix of Haar wavelet method. Let

( )( ) ( ) ( )TM x h x h xµ µ≅ 	 		                               (14)

where M(x) is 2M × 2M matrix. Multiplying the matrix M(x) by 
vector C we obtain 
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Figure 19. Comparison of MOLI (dotted line) and exact (solid line) solutions of Eq.(1) at N=1600, h=2, d=20 and t =2, 4 and 6 solutions for u.
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x MOL HWM

0 0.775435705843 0.7754895431117

15 0.927626747086 0.9278187550637

30 1.064755315418 1.0647366440529

60 0.361910033228 0.361897456040

75 0.138698696189 0.138739288119

90 0.049090131969 0.049112586589

105 0.016875068044 0.016884077653

120 0.005735339986 0.005738636481

135 0.001939263041 0.001940430796

150 0.000653791689 0.0006541999083

Table 1A. The values of velocity u at shore slope 2, d=10 and h=2 at t=0.5.

x MOL HWM
0 0.024695547836 0.0245922643554

15 3.726959266545 3.7285142696089
30 5.843373800096 5.8435239641855
45 4.617805767048 4.6162585617936
75 0.914469655265 0.9147581475193
90 0.33533007619 0.3354912710164
105 0.11910092844 0.1191671460289
120 0.04173323531 0.0417580771231
135 0.01452155544 0.0145305745015
165 0.00173613581 0.0017372827749

Table 1B. The values of elevation η at shore slope 2, d=10 and h=2 at t=0.5.

x MOL HWM
0 0.0146767645 0.0146561
15 0.0295304605 0.0295489
30 0.0695353242 0.06953156
45 0.1582343262 0.15823748
60 0.3297004405 0.3297049
75 0.58442395994 0.58442849
90 0.79737141212 0.79737165
105 0.74439222240 0.74643916
120 0.459331720102 0.41615933
135 0.217011889604 0.21701489
150 0.091314130163 0.0913489

Table 1C. The values of velocity u at shore slope 2, d=10 and h=2 at t=1.5.

( )( ) ( )M x C Ch xµ=  				                (15)

where C  is 2M × 2M matrix and called the coefficient matrix. 

Let R is 2M × 2M matrix. Multiplying the matrix R by vector 
h(µ)(x) and multiplying the matrix h(µ)(x) by the resulted matrix 
R h(µ)(x) we obtain

( ) ( ) ( ) ( ) ( ) ( )Th x h x xR R hµ µ µ=  			                 (16)

where R  is 1 × 2M matrix and called the coefficient matrix 
with the powerful properties of Eq. (16) We can achieve R  by 
away like C  we can convert the Volterra part of integral and 
Integro-Differential Equations System equations to an algebraic 
equation.

HWM applied to the Tsunami run-up model yields an analytical 
solution in terms of rapidly convergent easily computable terms.

 Equation (1) written as:

ut+ uux+ g ηx= 0 

u 0t x x x xH u u Huη η η+ + + + = 		                                  (17)

We define the linear operator Lt as: .tL
t
∂

=
∂

We consider the application of the HWM to the model of tsunami 
Run-up on the coast with the initial conditions. Where the initial 
wave height (h) and the constant value of sea depth (d) are given 
by h = 2 and d = 20. And we consider three different cases of 
shore slopes with the depth function H(x) given by

Case I: Shore slope = 0.5, H(x) = 0.5x + 300

Case II: Shore slope = 1, H(x) = x + 300

Case III: Shore slope = 2, H(x) = 2x + 300

For the Tsunami model we have computed analytic solutions to 
equation (15) using Maple 15 (Tables 1A-1H).
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x MOL HWM

0 1.22269209769 1.222708384879

15 1.226318884710 1.226331637389

30 1.163123922891 1.163127093566

45 1.0399381742546 1.03993184859

60 0.8761100530607 0.87609944751

75 0.6984085017272 0.69839912176

90 0.5310853501003 0.53107967707

105 0.3889804809915 0.38897825424

120 0.2769674718309 0.276967397910

135 0.1932186907370 0.193219595725

150 0.1328632088968 0.132864370631

165 0.090451826012 0.090452901556

180 0.061158023987 0.0611588959021

195 0.041158981836 0.0411596409561

210 0.027612428004 0.0276129062761

Table 1E. The values of velocity u at shore slope 0.5, d=20 and h=2 at t=0.5.

x MOL HWM

0 1.4124775362 1.4124936789

15 2.3416193724 2.3416204856

30 3.0069417436 3.0069163387

45 3.2648281925 3.2647767328

60 3.1256293454 3.1255710977

75 2.71598934708 2.7159458972

90 2.19289876937 2.1928784260

105 1.67726333464 1.6772618619

120 1.23401098686 1.2340199796

135 0.88345785062 0.8834704292

150 0.62064377369 0.6206560071

165 0.43038827925 0.4303985338

180 0.29581699704 0.2958249364

195 0.20209333266 0.2020991967

210 0.13749195049 0.1374961563

Table 1F. The value of elevation η at shore slope 0.5, d=20 and h=2 at t=0.5.

x MOL HWM

0 -0.42024584 -0.4208156232

15 -0.28024021 -0.2808516240

30 -0.00319321 -0.0038516193

45 0.600639997 0.600684563

60 1.800691310 1.800965691

75 3.667549880 3.667541649

90 5.378742395 5.378715423

105 5.256640812 5.25664084

120 3.354546155 3.35454566

135 1.630955322 1.63095856

150 0.704718125 0.704714815

165 0.290193924 0.29019392

180 0.116892752 0.11689275

195 0.046519873 0.04658955

210 0.018365262 0.01836562

Table 1D. The values of elevation η at shore slope 2, d=10 and h=2 at t=1.5.
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Discussion and Conclusion
The MOL and HWM for approximating arrangements of Non-
Linear Tsunami Model of Coupled Partial Differential Equations. 
The outcomes announced here give additional proof of the 
convenience of MOL. The MOL was unmistakably extremely 
effective and ground-breaking strategy in finding the arrangements 
of the proposed coupled nonlinear conditions. It is significant 
that to expand the exactness of the HWM the precision of the 
arrangement. This prompt increments the many-sided quality of 
computations. Be that as it may, the MOL is steady, easy to execute 
and requires moderately little computational assets. The numerical 
technique created in this investigation to anticipate the run-up of 
tallness waves gives a basic yet sensibly great forecast of different 
parts of the run-up process. The outcomes concur well with the 
exploratory information [9]. From this investigation we see that 
the technique for lines (MOL) is an appropriate strategy for the 
examination of long wave marvels started in the shallow water 
area. Besides, correlations with standard HWM arrangements 
uncover that the MOL gives a compelling calculation to mimicking 
shallow water conditions [10-15].
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