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Introduction
Antibodies have been proven to be indispensable tools for 
biomedical applications. Different engineered antibodies have 
been development for various purposes according to the amino 
acid sequence and/or spatial structure of protein (Figure 1). At 
present, it is still difficult to predict the optimal structure of 
antibodies. Topology knowledge can be important in antibody 
application as well as transformation. Theoretically, we can 
obtain desired antibodies by using protein/gene engineering 
technology. For instance, we can transform the complementarity 
determining region (CDR) to promote the affinity of the 
antibody to antigen. Similarly, we could also transform any 
domain of antibody to make it bind with any desired target. 
Under this vision, topology is a powerful tool to predict the 
structure of protein and it will serve to antibody engineering. 
Our present work tries to explain, and predict, if possible, the 
change of structure, size and function of antibodies as well as 
their fragments from a topological perspective.

For Re (z) > 0 the classical Euler’s gamma function G and psi 
(digamma) function y  are defined by
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respectively. The derivatives (n)(z)ψ for n∈


  are known as 
polygamma functions. 

For (z)ψ  [1], the following series representations are 
established: 
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Where, g = 0.577215664901...denotes the Euler’s constant. 

We next recall that a function f is said to be completely 

monotonic on an interval I , if  f  has derivatives of all orders on 
I which alternate successively in sign, that is,   

n n( ) ( 1 f   ) (x) 0− ≥  ,                                                             (1.5)

for all x I∈ and for all n 0≥ . If inequality (1.5) is strict for 
all x I∈ and all n 0≥ , then f  is said to be strictly completely 
monotonic [2-5].  The classical Bernstein–Widder theorem [6] 
states that a function f is completely monotonic on (0, ¥) if and 
only if it is a Laplace transform of some nonnegative measure 
m , that is,  
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Where, m (t ) is non-decreasing and the integral converges for 
x > 0. 

We recall also that a positive function f is said to be 
logarithmically completely monotonic on an interval I if f  has 
derivatives of all orders on I and   

n  ( )n 1  [ln  ( ) ( ]f x) 0− ≥ ,                                                      (1.7)

for all x I∈  and for all n 1≥ . If inequality (1.7) is strict for all 
x I∈  and all n 1≥ , then f is said to be strictly logarithmically 
completely monotonic [7-9].

The antibody structure will be changed when it binds certain 
target (Figure 2a), i.e.,: antigen, receptor. How to describe the 
changes in the view of topology? The following cases will 
explain it in detail. It was proved explicitly by Berg C [8] and 
other articles that a logarithmically completely monotonic 
function must be completely monotonic.

Anderson GD et al. [10] proved that the function

g  x  x lnx x( ) ( ( )) = − ψ                              (1.8)

is strictly decreasing and strictly convex on (0, ¥), with two 
limits

x 0
limg(x) 1
→

= ,
x

1limg(x)
2→∞

=                                                   (1.9)

From (1.9) and the monotonicity of g ( x), then the double 
inequalities
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1 1lnx (x)
2x x

< − ψ <                                                           (1.10)

holds for all x > 0 .

By using the well-known Binet’s formula, Alzer H [11] 
generalized the monotonicity and convexity of g ( x), that is, 
the function

a
ag (x) x (lnx (x))= − ψ                                                      (1.11)

 is strictly completely monotonic on  (0, ∞) if and only if 1 α ≤

Kershaw D and Laforgia A [12], proved that the function 
( ) x1 1[ ]/ xΓ +  is decreasing on (0, ∞) and ( ) x1 1x[ ]/ xΓ +  

is increasing on (0, ∞). These are equivalent to the function 
( ) 1/x1 1 / x[ ]Γ +  being increasing and ( ) 1/x[ ]1 1 / x   / xΓ +  

being decreasing on (0, ∞) , respectively.

F Qi and Chp Chen [13] generalized these functions. They 
obtained the fact that for all x > 0  the function ( )r 1/xx  1 x[ ]Γ +    
is  strictly increasing for r 0≥  and strictly decreasing for 
r 1≤ − , respectively.

After the papain digestion, the remained antibody functional 
part (usually the Fab domain), will be smaller and the structure is 
also changed (Figure 1b). These changes can be revealed vividly 
using topology. Recently Qi F et al. [14] established another 
excellent result, which states that for given ( 1  )y ,∈ − ∞  and 

,( ) −∞α ∈ ∞ , let
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               (1.12)

The  function  (1.12) is logarithmically  completely  

Figure 1. Different antibody formats. a: different antibody or engineered antibodies; b: different shape of antibody.

Figure 2. Model of pH-dependent conformational change of FcRY and structures for the FcRY monomer and dimer. a: FcRY has an extended 
conformation at pH 8 (s*= 7.2 S) with no predicted interaction between the CysR-FNII domains and the CTLDs. At pH 6 the CysR-FNII region 
folds back and binds to the CTLDs, resulting in a more compact conformation (s*= 7.9 S) that is able to bind IgY. b: Likely orientations of FcRY 
and FcRY–IgY on a membrane. The two FcRY monomers on the right are shown in an orientation that would allow formation of a 2:1  FcRY–IgY 
complex.
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monotonic  with  respect to  ( ),yx 1− −∈ ∞  if and only if 
max 1,1 /  y{ ( )1 }α ≥ +  and if min 1,12 /  y{ ( )1 }α ≤ + , the 

reciprocal  of  the function (1.12) is  logarithmically completely 
monotonic with  respect to  ( ),yx 1− −∈ ∞ .

Antibodies occur spontaneously gathering and forming dimer, 
polymer, which will influence their functions (Figure 2b). In 
antibody engineering practice, it urgently needs some measures 
to overcome this difficulty. From topology perspective, we 
could understand this issue as follow.

Stimulated by the above results, we put forward the function 
as follows: for given y ( )0, ∈ ∞  and real number a , let the 
function  ,yf ( )xα  be defined by:

( )
{ }

1/x

,y
1 (x y)f (x) ,x ( y, ) \ 0

(y)x
α α

 Γ +
= ∈ − ∞ Γ 

                 (1.13)

Our first result is contained in the following theorem.

Theorem 1. For the function (1.13), then the following 
statements are true:

(1) For any given  y≥1, the function (1.13) is strictly logarithmically  
completely monotonic with respect to x Î(- y, ∞) \ {0}if and only 
if 1 α ≥ ;

(2) For any given 0 < y < 1, if 1  y  ( )e / y− −α ≥ , then the function 
(1.13) is strictly logarithmically completely monotonic with 
respect to x  y,( ) { }\ 0∈ − ∞ ; 

(3) For  any  given  y > 0,  the  reciprocal  of  the  function  (1.13)  
is strictly logarithmically completely monotonic with respect to 
x  y,( ) { }\ 0∈ − ∞  if and only if  0α ≤ .

Our second result is presented in the following theorem.

Theorem 2. For any given ∈ ∞  y 1, , let the function hy ( x) be 
defined on (0, ∞) by

2
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Where γ denotes the Euler’s constant,   then   the   function   
(1.14) is strictly logarithmically completely monotonic with 
respect to x on (0, ∞).

The following corollary can be derived from Theorems 2 
immediately.

Corollary 1. For any given y 1≥ , the inequality
2

2
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holds for all x > 0.

Lemma

In order to prove our main results, we need the following 
lemmas. 

It is well known that Bernoulli polynomials Bk ( x)and Euler 
polynomials Ek ( x) are defined by 
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respectively. The Bernoulli numbers Bn are denoted by Bn  = Bn  
(0) , while the Euler numbers En are defined by En  = 2  En (1/2).

The following summation formula is given:
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for any nonnegative integer  k , which implies
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In particular, it is known that for all n Î 


 we have
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n
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And the first few nonzero values are

B0=0 B1= 
1
2

− B2= 
1
6  B4=

1
30

−

E0  = 1, E2  = -1, E4  = 5,
The Bernoulli and Euler numbers and polynomials are 
generalized [15-21].

Lemma 1. For real number x > 0 and natural number m [22,23], 
then 
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Remark 1. θ1 , θ2 , θ3 , θ4 only depend on natural number  m .

Lemma 2.  For real number x > 0 and natural number n, we 
have [24]:

n 1 (n)
n n 1 n n 1

(n 1)! n! (n 1)! n!( 1) (x)
x 2x x x

+
+ +
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(2.11)
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Lemma 3 For real number x > 0 and natural number n, we have 
[1,17]:
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Lemma 4. Let the sequence of functions un (x) for n∈


be 
defined on (0, ∞) by
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the series  n
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Proof. It is obvious that n
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converges at x = 0. In order to prove (2.16), we need only to 
show that the inner closed uniform convergence of the series 

n
n 1

u' (x)
∞

=
∑  on (0, ∞). From (2.15), we have

n
n 1 n 1

2x 2xu' (x)
n n x

∞ ∞

= =

 = − + 
∑ ∑ ,                                                            (2.17)

For any interval a,b  [ ] ( )0,⊂ ∞ , we have
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x [ ]a,b∈  It is easy to check that the series 
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converges, which and Weierstrass M-test implies that the series 
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identity (2.17) holds for x 0≥ . 

The lemma is proved.

Lemma 5. For 0  1  <α ≤ and real number b, let the function 
Qa,b ( x) be defined by

x
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Proof. Taking the logarithm of Qa,b ( x) yields 
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and, by the identities (2.13) and (2.14), (2.23) can be written as
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Let
t( ) ( )(t  1 bt 1 e  ) at−ρ = + − −  and t( ) ( )(q t  1 t 1 e  ) t−= + − − .

It is easy to check that
t  q' ( t  te  0, t 0, ) ( )−= > ∈ ∞                                              (2.25)

therefore q (t ) is strictly increasing on (0, ∞), and then q (t ) > 
q (0) = 0.

The following two cases will complete the proof of Lemma 5.

Case 1. If 0 < a ≤ 1 ≤ b, then since q (t ) > 0 for t > 0, we have 
at a t < (1+ t )(1- e-t ) £ (1+ bt )(1- e-t ),                           (2.26)

which implies t( )at 1 bt 1(  )e−< + − , and then p (t ) > 0 
for all t > 0.

 From  (2.24), we know  that  the  inequality  (2.20)  holds for 
x b ( )a,∈ − ∞  and integer n ≥ 2.

Case 2. If 0 a b 1< ≤ ≤ , then we get

t  tp ' t  b  a  e bt 1  b bte    0, t 0( ) ),) ( (  − −= − + + − ≥ > ∈ ∞  
(2.27)

Therefore p (t ) is strictly increasing on (0, ∞), and then p (t ) > 
p (0) = 0 .

From (2.24), we  know  that  the  inequality  (2.20)  holds for x 

∈(-b a , ∞) and integer n ≥ 2.

The lemma is proved.

Proof of Theorems

Proof of Theorem 1. For x 0≠ and natural number n, taking 
the logarithmically differential into consideration yields
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and y(x ) ψ +  respectively.
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Making use of  (2.11)  and (2.13) shows  that for  all   n∈ 
and  any fixed y > 0 ,the double inequality
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holds for all x  y,( ) { }\ 0∈ − ∞  and  ,( )α∈ −∞ ∞ .

For any fixed y ( )0,∈ ∞ , let u (t ) and v (t ) be defined on 
( , )−∞ ∞  by
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Differentiating u (t )and v (t ) directly, we obtain

yt 1 1u'(t) e y yt
2 2

−  = − − 
 

                                                 (3.4)

( )ytv '(t) e 1 y yt−= − −                                                   (3.5)

Therefore, for given y ( )0,∈ ∞ we have

{ 0, t<1/y-2
0, t>1/y-2 u'(t) >

<
                                                        (3.6)

and

{ 0, t<1/y-1
0, t>1/y-1 v '(t) >

<                                                       (3.7)

From (3.6) and (3.7), we conclude that for all t > 0 we obtain
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From (3.3) and (3.8)-(3.9), it is easy to see that
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For all n∈  and all x y,( ) \ {0}∈ − ∞ .

On the one hand, if x ∈(0, ∞), then the inequalities (3.10) can 
be equivalently changed into
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for k ∈ .

From (3.1), then simple computation shows that
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for all n∈ and any given y ( )0,∈ ∞ . As a result, 
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for all k ∈  and all  x > 0.

Therefore, (3.14) and (3.15) imply
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(3.16)

for all n∈  and all  x > 0.

Hence,  if  either (1  y)e / y− −α ≥  for given  0 < y < 1 or 1α ≥  
for  given y 1≥ , the function (1.13) is strictly logarithmically 
completely monotonic with respect to  x on (0, ∞), and if 0α ≤  
for given y > 0, so is the reciprocal of the function (1.13).
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On the other hand, if x  y( ),  0∈ −  for any given y > 0, then 
(3.10) implies
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In view of (3.13), we can conclude that
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for n∈ . It is obvious that (3.18) is equivalent to that (3.14) 
and (3.15) hold for any given y > 0 and x ∈(- y,0).Therefore, it 
is easy to prove similarly that (3.16) is also valid on x ∈(- y,0)  
for any given y > 0 and all n∈ .

The amino acid of antibody/protein possesses different 
preferences. Thus we can conduct site-directed mutation to 
promote the affinity and/or hydrophilic with the prediction 
of topology. For example, bovine antibodies have an unusual 
structure comprising a β-strand ‘stalk’ domain and a disulphide-
bonded ‘knob’ domain in CDR3 (Figure 3). Attempts have been 
made to utilize such amino acid preference for antibody drug 
development.

Consequently,  the   function  (1.13)  is  the  same  logarithmically 
completely monotonicity  on  (- y,0) as on (0, ∞), that  is,  if   
either (1 )– ye / y−α ≥  for  given 0 < y < 1 or 1α ≥ for  given  

y 1≥  the function  (1.13) is  strictly logarithmically completely 
monotonic with respect to  x  on (- y, 0) , and if 0α ≤  for given  
y > 0, so is the reciprocal of the function (1.13).

Conversely, we assume that the reciprocal of the function 
(1.13) is strictly logarithmically completely monotonic on 
( ) { } y, \ 0− ∞  for any given y > 0. Then we have for any 
given y > 0 and all x > 0

( ) ( ) ( )ψ
α

Γ + − + − Γ α
= + <, 2

( )
0'

y

ln  x y x x y ln y
f x

xx
                                       

(3.19)

which implies 

( ) ( )ψΓ + − + − Γ
α < −

( )ln  x y x x y ln y
x

        (3.20)

By L’Hˆospital’s rule, we have

( ) ( )ψ
→

− Γ + − + + Γ
=

0

( )
lim 0
x

ln  x y x x y ln y
x

     (3.21)

for any given  y > 0. By virtue of (3.20) and (3.21), we conclude 
that the necessary condition for the reciprocal of the function 
(1.13) to be strictly logarithmically completely monotonic is 

0α ≤ .

If the function (1.13) is logarithmically completely monotonic 
on ( ) { } y, \ 0− ∞

for any given  y > 0, then the inequality (3.19) and (3.20) are 
reversed for any given y > 0 and all  x > 0.

By utilizing (2.7) and (2.8), it is easy to see that

Figure 3. Unique structural domain in bovine IgG antibodies and application 
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( ) ( )ψ
→∞

− Γ + + + + Γ
=

( )
lim 1
x

ln  x y x x y ln y
x

       (3.22)

for any given  y > 0. In fact, it is not difficult to show that 
the necessary condition for the function (1.13) to be strictly 
logarithmically completely monotonic is 1α ≥ .

 The proof of Theorem 1 is completed.

Proof of Theorem 2. Taking the logarithm of hy ( x) gives

( )
∞

=

+
= − + −

Γ +

− + + + −∑

2 2

2
2

1

( ) 1ln ln ln ( )
(x y) 2

2 ( ln(1 ) 2 )

x
x   

y 

n

n

x yh x x γ x

x xx x
n n

             (3.23)

Let

( )µ +
=

Γ +
( )ln
(x Y)

xx yx                                                                     (3.24)

ω

∞

=

= − + − −

+ + + −∑

2 2

2
2

1

1( ) ln ( ) 2
2

( ln(1 ) 2 )

x   

n

n

x x γ x x

x x x
n n

            (3.25)

then

y lnh x  ( ) ( )x  )(x=µ +ω  .                                                                           (3.26)

In view of Lemma 4, straightforward calculation gives

( )ψ

∞

=

= + + − +
+

 − + γ + − − + 
∑
n 1

((ln ( )) ln( )

2x 2x2t lnt 2 x 2
n n x

y 
xh x '  x y  x y

x y

= ( ) ( )µ ω+' 'x x                                                                          (3.27)

By virtue of (1.2), the identity (3.27) is equivalent to

( ) ( )( )ψ ψ

= + +
+

− + − −

((ln ( )) ln( )

2 ln

y 
xh x '  x y  

x y
x y x x x

= ( ) ( )µ ω+' 'x x                                                                                 (3.28)

By Lemma 5, we know that )'(xµ  is strictly increasing on (0, 
¥), which and (1.10) imply the limit of )'(xµ
equals 1 as x → ∞ therefore

1'(x)µ <                                                                                         (3.29)

 holds for all  x > 0.

We know that g ( x) is strictly completely monotonic on (0, ¥), 
where g ( x) defined by (1.8), hence for given integer n 0≥ , 
the inequality.

n )1 n(( ) ( ( )1 '  x  )  0+− ω >                                                               (3.30)

 holds for all  x > 0.

 And then by using inequality (1.9) and (1.10), we get

2 ('  x) 1ω− < < −                                                                     (3.31)

 for all  x > 0 .

From (3.29) and (3.31), we conclude that

y( ( )) ( )lnh  x   x   x) 0(  = µ +ω <                                                           (3.32)

 for all that x > 0. Utilizing Lemma 5 and (3.30), for given 
integer n 2≥ , it is easy to see that equation for all x > 0.

Theorem 2 follows from (3.32) and (3.33). 

Thus the proof of Theorem 2 is completed [25-31]. 

Conclusion
In conclusion we establish two new logarithmically completely 
monotonic functions involving the gamma function according 
to two preferred interaction geometries, and a sharp inequality 
involving the gamma function is deduced to solve the problems 
of genetically engineering antibody. It is necessary to address, 
many other aspects (such as thermal condition, alkalinity or 
acidity, adhesion of antibody) are also playing key roles in 
antibody functioning, which could be also understood from 
bio-mathematical perspective, and such knowledge will be in 
return useful for biomedical application of antibodies as well as 
proteins [25-31].
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