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Abstract

Alzheimer’s Disease (AD) is the most prevalent non-reversible neurodegenerative disorder that affects
the memory and cognitive centres of brain. It has been reported that, AD turns out to be prominent
among the people aged ~65 or above and is regarded as the most common cause of dementia. Moreover,
AD stands among the leading causes of death in the first world nations, accounting more than 60%
incidence of progressive cognitive impairment in elderly people. Amyloid beta and neurofibrillary
tangles are two putative cytotoxic entities that have been identified, aggregation of which has been
associated with the pathological signature of AD. Beta secretases—an amyloid precursor protein
cleavage enzyme, plays a pivotal role in such pathogenic process of AD. Several other enzymatic
dysregulations have also been linked with AD. Involvement of enzymatic dysregulation is the most
discussed pathological implication in AD and therapeutic approaches have been postulated targeting
such anomalies. Together, global consequences of enzymatic dysregulation and related therapeutic
possibilities in AD remain the prime focus of present time. Therefore, research and study for the
eloquent insight into the AD pathology from enzymatic perspective is essential and the same endeavour

has been carried out in the present study.

Keywords: Alzheimer's disease, Amyloid beta, Beta secretase, Glycogen synthase kinase 3 beta, Acetylcholinesterase,
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Introduction

Alzheimer’s Disease (AD)—an age-related, insidious
neurodegenerative disorder, characterised by cognitive and
memory impairment. It has been reported that AD is frequent
among people with an age group of 65 or more. Clinically, AD
is the common cause of dementia and regarded as the most
common cause of death in the first world nations [1]. Over
60%-70% incidents of cognitive impairment in elderly patients
have been found to be associated with AD [2]. The overall
prevalence of AD in USA alone is around 2.3 million as per
the statistics made in the early 20 century [3]. The prevalence
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of AD among men vs. women is observed in the ratio of 1:2 to
1:5 [4]. Two known forms of AD have been reported; namely,
familial and sporadic variety. Familial AD is less prevalent and
stands around 10% of the total AD patient population [5].
Regardless the variety of AD, medical care becomes
excessively necessary in the final phases of AD i.e., the last
three years before death due to the reason that, AD not only
causes memory loss but also incorporates the symptoms like
dramatic personality changes, lack of physical coordination,
and disorientation [6]. Generally, the final stages of AD are
even more dramatic where victims are bedridden, with loss of
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control in urinary and bowel movement, and frequent epileptic
attacks [7]. Clinically, loss of synaptic function, presence of
amyloid plaque, neuro-fibrillary tangles (NFT) and brain
atrophy in specific brain areas confirm the presence of AD [8].
In a living patient, dementia is hard to confirm accurately;
however, near to accurate diagnosis is possible through
cognitive tests such as delayed recall and exclusion of other
conditions such as hypothyroidism, nutritional deficiency and
stroke [9]. An effective therapy for dementia is yet to be
discovered. Safety concerns over synthetic drugs are now
being promoted and drugs based on natural origin, are trending
globally.

Enzymatic dysregulation is the most common pathological
scenario of AD and involvement of such dysregulation has
been targeted in several therapeutic approaches for AD [10].
Beta-secretase (B-secretase) is considered as the most critical
enzyme involved in the AD pathology. Amyloid precursor
protein (APP) is the substrate for B-secretase and uncontrolled
cleavage of APP generates amyloid beta (AB) [I1]. AP
oligomers are aggregation prone, which in advanced stage
forms toxic senile plaques both in cytosol and extracellular
matrix. Another crucial enzyme is glycogen synthase kinase-3f3
(GSK-3p), which is having pathogenic role by assisting in the
process of tau-protein hyperphosphorylation.
Hyperphosphorylated tau is also having the tendency to
aggregate and it has been identified as an ingredient of toxic
senile plaques [12]. Moreover, hyperphosphorylated tau
protein is known to modify other essential protein structures by
phosphorylation and GSK-3f plays determining role in such
cases. Enzymes like acetylcholinesterase; Rho kinase; prolyl
endopeptidase; monoglycerol lipase; catechol-O-methyl
transferase, are also having a putative role in the pathogenesis
of AD [13]. Pathogenic role of each enzyme has been
discussed in the present study for the better understanding of
AD pathology. It is notable that several synthetic and herbal
therapeutic approaches have been postulated, where regulation
of such enzymatic function is the centre of remedy [14].
Though, complete cure of AD is still unaccomplished.

Global research in search of therapeutic values of various plant
species is going on and few plants have been identified with
potential efficacy to improve symptomatic AD pathology [14].
Countless mentions from ayurvedic medicinal recipe also have
offered better therapeutic promises [15]. Another advantage of
herbal therapy is that, it contains no or less side effects and is
available at a very low cost [16]. Since immortal time of
mankind, traditional medicines served as potential therapeutic
means against mental disorders and success of such approach
has gained immense interest and popularity across the globe
[17]. Together, enzymatic dysregulation is the crucial point of
interest for therapeutic intervention against AD.

Overview of AD

AD is the most common neurodegenerative disorder and also
the main cause for dementia in humans. Initial symptom of AD
includes short term memory loss that develops into profound
memory failures at subsequent stages [18]. AD is having two
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distinct pathological signatures namely senile plaques
(containing deposits of AP protein) and NFT; consisting of
hyperphosphorylated tau protein. In the early stages of disease,
huge number of neuronal cells dies causing neuronal losses in
the brain’s memory regions. Studies in this regard, showed that
aberrant proteolytic processing of the APP leads to AB1-40 and
APB1-42 fragments capable of initiating cytotoxicity in neuronal
environment in AD brain [19]. Nonetheless, the knowledge
concerning mechanism behind plaque deposition, neuronal cell
death, and NFT by AP proteins still remains unclear.

Incidence and Prevalence of AD

More than four million people in the United States are
presently affected by AD. It is now causing more number of
deaths compared to those caused due to stroke. Together,
stroke and AD stand as the third most common cause of deaths
in USA [20]. Statistically, the prevalence of AD is found to be
more common among women. As per the data published in
Diagnostic and Statistical Manual of Mental Disorders (4t
Edn.), prevalence of dementia is observed in the range of 1%
in developing countries like India, Peru, etc. to almost 6.4% in
countries like Cuba. As compared to developed countries,
developing countries like India, Nepal, Brazil, Nigeria, and
Taiwan show lower annual incidence estimates in the range
1%-2% of total reported cases [21-24]. Mean survival time for
AD patients in developed countries is perceived to be 5y to 9.3
y while that in developing countries, it is 3.3 y from the time
dementia sets in. For AD patients, the mean survival time
further reduces to meagre 2.7 y [23].

AD Pathology

Amyloid beta peptides (AP) production and clearance
determines molecular pathogenesis of AD. Primarily,
generation of AP occurs through cleavage of APP by beta- and
gamma- processing enzymes. These are then cleared from the
brain through diffusion, exported to vascular system, and
followed by degradation or phagocytosis [25]. Experimental
studies in this regard have provided some insights into the
molecular mechanism of AD; identifying APP as the causative
gene for Familial AD (FAD). In a mouse-based animal model,
endogenous apolipoprotein E4 (APOE-4) was observed to
enhance AP deposition [26,27]. Presence of aggregates of
hyperphosphorylated tau proteins commonly referred to as
NFT serves as the primary markers for diagnosis of AD. These
insoluble NFT have an abnormal conformation and are
deposited in the neuronal cell bodies. These are capable of
forming specific insoluble structures called paired helical
filaments (PHF) [28,29]. Alternate splicing of fau gene gives
rise to six tau protein isoforms; primarily used for stabilization
and binding of microtubules thereby promoting microtubule
polymerization. The mechanism behind aggregation or PHF
formation is attributed to hyperphosphorylation of tau which
induces disassociation of tau from microtubules [30,31].
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Role of Oxidative Stress in AD

On account of high lipid content, brain is prone to oxidative
damage. In addition to this, high rate of metabolic function and
supply of the required transition metals makes it an easy target
for free radical attacks [32]. Direct evidences in this regard are,
increased composition of Fe, Al, and Hg in the brain, reduction
in levels of polyunsaturated fatty acids in the brain, increased
lipid peroxidation as well as rise in levels of ventricular fluids
such as 4-hydroxynonenal which is produced in the process,
increased DNA and protein oxidation in the brain, decreased
cytochrome ¢ oxidase in the brain along with diminished
energy metabolism [33], advanced glycation end products
(AGE), malondialdehyde, carbonyls, peroxynitrite, heme
oxygenase-1 and superoxide dismutase-1 (SOD-1) in NFT and
AGE, heme oxygenase-1, SOD-1 in senile plaques, and
generation of free radicals by Ap.

Oxidative stress induces serious damage to formation of
biological macromolecules like malondialdehyde and lipofusin
[34]. As per experimental studies, oxidative damage primarily
involves lesion on account of low protein outputs [35]. In
lesions of AD, adduction production of hydroxynomenal [36]
and acrolein [37] is also found due to lipid peroxidation.
Nevertheless, lesions are not the dominant sites of damage,
rather neuronal cytoplasm of neurons are susceptible damage
sites of death and damage in AD. Inside the cell, cross linked
products of lipid peroxidation and glycation undergo oxidative
modification thus, becoming more and more resistant to
breakdown. Crosslinking not only hinders proteasome activity
[38] but also renders proteins resistant to removal by
proteasomes. Neurons that face oxidative damage begin to
have protein-based reactive carbonyl and nitro tyrosine in the
cytoplasm. Evidences of its formation in amyloid B or t
deposits suggest cytoplasm rather than lesions as the source of
reactive oxygen species (ROS) [39]. Among vulnerable
neuronal populations, 8-Hydroxyguanosine (8-OHG) a nucleic
acid modification obtained through hydroxyl free radical attack
on guanidine is greatly increased in the cytoplasmic RNA [40].
8-OHG decoration was observed more in the endoplasmic
reticulum with majority of mitochondria showing scarce 8-
OHG.

Role of Inflammation in AD

Pathophysiology of AD involves extensive neuronal death
accompanied by deposition of amyloid in various regions of
the brain. These amyloid deposits lead to accumulation of
several proteins along with underlying inflammatory reactions,
thereby resulting in extracellular senile plaques [41]. Intra-
cellular deposition of hyperphosphorylated degenerate
filaments results in NFT that form due to the aggregation of
micro tubular protein tau. Such cellular progresses results in
heavy amounts of neuronal losses in the hippocampus,
entorhinal cortex, and associated regions of brain neocortex.
Although, the reason behind neuronal cell death still remains
unknown yet postulates in this context suggest ‘apoptosis’ as a
possible reason [42]. Inflammation is also seen to be actively
involved in the progression and pathology of AD. Association
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of microglia with the senile plaque leads to amyloid plaque
deposition which results in the phenotypic activation and
subsequent elaboration of neurotoxic as well as pro-
inflammatory factors [43].

Neurons which are located nearby chronically activated
astrocytes and microglial cells die out due to toxins such as
ROS intermediates, proteolytic enzymes, excitatory amino
acids, nitric oxide, complimentary factors etc. Proinflammatory
cytokines not only enhances AP40 and AP42 peptide
production but also decreases APP solubility alongside
providing neuroprotective effects [44]. In the onset of a
neurological disease, APP modification begins long before
disease symptoms begin to appear. During disease period,
astrocyte and microglial cells activate following binding of AP
to the CD14 receptor and its co-receptor—toll-like receptor 4
(TLR4). After which morphological changes in microglial cells
is observed, these now turn into tissue macrophages producing
inflammatory molecules [45]. This has generated enormous
interest towards the in vitro study of the anti-inflammatory
effect of selected plant extracts.

Enzyme Involved in AD Pathobiology

Beta secretase

A large type-l membrane protein called APP, when gets
endoproteolysed, it generates the AP peptide [46,47]. AP is a
normal catabolic product of APP metabolism in cells showing
ubiquitous expression of APP. APP cleavage by B-secretase
form the amino terminus Asp+1 residue of the AP sequence.
This process generates two cleavage products, viz., a secreted
ectodomain of APP, named APPsf and second being the C99
fragment, the membrane-bound C-terminal 99 amino acids
residue (Figure 1) [48]. After the first cleavage, the C99 get
acted upon by a second protease called y-secretase. This
enzyme cleaves C99 to generate the carboxyl terminus of AP
along with a mature peptide which is then secreted from the
cell. The non-precise y-secretase cleavage results in a spectrum
of AP peptides that vary in length by a few amino acids at the
carboxyl terminus, however, majority of AP terminates at 40t
amino acid residue. Another type of protease called o-
secretase, cleaves APP in the mid-Ap domain (at Leu+17) and
hence, precludes the formation of AP [49]. The o-secretase
produces two cleavage products: the secreted APPsa
ectodomain and the membrane-bound C-terminal fragment
C83. The C83 is then cleaved by y-secretase to form a 3 kDa
fragment, p3 [50]. Intriguingly, the APP mutations leading to
FAD occur at APP near the site of cleavage and as a result, the
mutations directly affect cleavage efficacy. For example, the
Swedish mutation is the amino acid substitution of lysine and
methionine to asparagine and leucine at the P2-P1 positions at
N-terminal of the B-secretase cleavage site in APP [51]. This
double mutation makes APP a much better substrate for [3-
secretase thus dramatically increasing the cleavage efficacy.
Many more examples of FAD mutations have been identified
that are positioned near the y-secretase cleavage site and these
shift the balance of y-secretase cleavage towards generation of
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the more toxic AB42 (similar to the action of FAD mutations in
the presenilins) [52]. Moreover, efficiency of o-secretase
cleavage has been reduced by mutations in FAD near the
enzyme cleavage site. This alteration results in furnishing more
APP as substrate for P-secretase cleavage and consequent
generation of Ap.

Establishment of the fact that APP endoproteolysis produces
AP [53,54], resulted in information hunt on the properties of -
secretase activity in cells and tissues. Concommitant studies
utilized the data in various ways to validate certain -secretase
1 (BACE-1) attributes. In this context, f-secretase activity has
been briefly reviewed. This enzyme has been detected in
majority of the body cells and tissues [55], but its maximum
activity has been found in neural tissue and neuronal cell lines
[56]. One interesting fact is expression of B-secretase activity
in astrocytes is less compared to neurons [57]. The research
reports strongly indicated that P-secretase might be widely
expressed in many tissues and cell lines but its maximum
expression is found in neurons of the brain. B-secretase activity
in cells results in efficient cleavage of membrane-bound APP
only, whereas APP constructs lacking the transmembrane
domain did not get cleaved when transfected into cells [58].
The fact implied that B-secretase might be a membrane-bound
protease or, alternatively, it is strongly associated with a
membrane protein for its function. At an acidic pH, p-secretase
shows maximum activity and hence, the agents that disrupt
intracellular pH also inhibit B-secretase activity [59,60].
Additionally, cellular level studies found maximum B-secretase
activity in the acidic subcellular compartments of the secretary
pathway, including the Golgi apparatus and endosomes
[61,62]. From these results, it has been postulated that the
active site of B-secretase might be situated within the lumen of
acidic intracellular compartments. Amino acids surrounding
the cleavage site in APP when changed by site directed
mutagenesis leads to identification of sequence preferences of
B-secretase [63]. Substitution of larger hydrophobic amino
acids (such as Leu found in the Swedish FAD mutation) for the
Met residue at Pl site improved [-secretase cleavage
efficiency. Conversely, substitution of the smaller hydrophobic
amino acid Val at the same position showed cleavage
inhibitory effect. Some more substitution studies at this site
and at some surrounding positions showed a decrease in
cleavage efficacy and hence establish the fact that f-secretase
is highly sequence specific. Studies from radiosequencing
demonstrates that AP isolated from amyloid plaques and those
produced in cell lines, predominantly begins at the Asp+l
residue of AP [64]. But, some AP species were found to begin
at Val-3, Ile-6, and Glu+11 residues also [65]. Studies utilizing
inhibitors suggest that the Val-3 and Ile-6 species are generated
by a protease other than B-secretase [66]. However, the Glu+11
species is found to be produced in parallel with Asp+1 AP
which suggests that B-secretase can cleave at both positions.
Interestingly, the Glu+1ll species is found to be the
predominant form of AP made in rat primary neuron cultures
[67]. Finally, pB-secretase shows no sensitivity towards
pepstatin which is an inhibitor of many (but not all) aspartic
proteases.

2218

Glycogen synthase kinase 3f

Glycogen synthase kinase 3 (GSK3pB) has been linked as a
central player in AD by many studies. It has been found that
deregulation of GSK3p shows numerous pathological
hallmarks of the disease in both sporadic and FAD cases [68].
These crucial findings led to ultimate formulation of the
‘GSK3p hypothesis of AD’. Evidences from studies showed
that GSK3p is intimately involved in the hyper-
phosphorylation of tau, memory impairment, increased
production of AP and also in inflammatory responses (Figure
1). GSK3p has reductive effect in acetylcholine synthesis,
which is in accordance with the cholinergic deficit character of
AD [69]. Moreover, GSK38 is a key mediator of apoptosis and
hence involves the possibility to contribute towards neuronal
cell death in AD [70].

Naturally if GSK3 is central to AD pathogenesis, its increased
activity in AD patients should be a common occurrence.
However, there is little such evidence, as it is technically
difficult, if not impossible, to measure enzymatic activity in
post-mortem brain tissue. Certain indirect evidences from
many studies do support the role of GSK3f in disease and it
shows co-localization with dystrophic neurites and NFTs
[71-73]. Active GSK3p appears in neurons with pre-tangle
changes [74] and in AD pathology, there is increased GSK3p
activity in the frontal cortex which was evidenced by immuno-
blotting for GSK3p phosphorylated at Tyr216 [75].
Furthermore, the hippocampus region of AD patients shows
up-regulated GSK3p expression [76]. In case of both AD and
mild cognitive impairment, GSK3[ expression is up-regulated
in circulating peripheral lymphocytes [77]. It has recently been
reported that a polymorphism in the GSK3f promoter is a risk
factor for late onset AD [78] and the same might account for
alterations in GSK3p expression in disease. Collectively, these
findings suggest that GSK3p activity might be increased in AD
and the process changes in phosphorylation state as well as in
expression levels. But still direct evidence for this mechanism
is equivocal and some studies have found no change in GSK3p
activity [79] or even reduced GSK3p activity in AD [80].

Genetic and epidemiological studies indicate that GSK3p
deregulation in AD is due to alterations in upstream Wnt and
insulin signalling pathway intermediates. The low-density
lipoprotein receptor related protein 6 (LRP6), a co-receptor for
Wht signaling, has recently been identified as a gene of risk for
late onset AD in apolipoprotein E4-e4 negative individuals
[81], implicating aberrant Wnt signalling in AD pathology. In
addition, an association of AD with diabetes and insulin
resistance has been reported [82] and genetic studies find
insulin signalling genes to be potential target loci for AD
[83,84]. As studies suggested, the positive association of Wnt
pathway with AD may help in studying neurological alterations
during carcinogenesis or conversely pre-AD stage neuronal
alterations, which may be served as a marker for ongoing and
future onco-events.
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Figure 1. Schematic presentation of enzymes involved in amyloidogenic and non-amyloidogenic processing of APP.

Acetylcholinesterase (AChE) and butrylcholinesterase
(BuChE)

Cholinergic transmission in the central and peripheral nervous
system is controlled by a neurotransmitter—Acetylcholine
(ACh). ACh hydrolysis is catalysed by Acetylcholinesterase
(AChE). Butyrylcholinesterase (BuChE) is another similar
group of neurotransmitter which is present in selected areas of
central and peripheral nervous system. The cognitive
impairment faced by AD patients is associated with
accumulation of NFT, loss of cholinergic functions along with
constitution of hyperphosphorylated Tau protein. Both of these
enzymes participate in collaboration with plaques, and tangles
in AD [85]. In AD subjects, levels of AChE and BuCHE are
found to be elevated in various regions of the brain. Severity of
AD is expressed in terms of higher activity of AChE and
BuChE enzymes along with increased number of cortical and
neocortical amyloid rich tangles and plaques [86]. Neuronal
losses in AD patients’ especially in terms of cholinergic
neurons; are associated with apoptotic cell death thereby
inducing cortical shrinkage in the brain. The cholinergic
neurons are responsible for maximum expression of AChE as
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compared to remaining neuronal cells [87]. Prolonged
availability of AChE in the neuronal cells serves in
amelioration of AD symptoms [88]. Contemporary works
suggest that inhibition of AChE and BuChE enhances
cholinergic transmission in AD. Therefore, current therapeutics
involves inhibition of these enzymes with the help of
phytochemicals viz. galanthamine, rivastigmine, and donepezil.

Rho kinase

Rho kinase is a serine or threonine kinase which is activated by
binding to active GTP-bound from Rho. Two known isoforms,
ROCK 1II (ROK o/Rho kinase a) and ROCK I (Rho kinase
B/ROK B) are existent which phosphorylates various substrates
such as myosin-binding subunit (MSB) of myosin phosphatase
and myosin light chain (MCL) [89]. ROCK T is expressed
abundantly in non-neuronal tissues such as the stomach, liver,
and kidney. Whilst ROCK 1I is preferentially expressed in the
brain and muscle tissues. Several functions of the central
nervous system (CNS), for instance, regulation of axonal
growth [89], formation of branched dendrites [90], long-term
spatial memory [91], regulation of the level of amylodogenic A
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42 [92], neurotransmitter release [93], etc. is attributed to
Rho/Rho-kinase signalling. In both vertebrates and
invertebrates, morphological changes in neurons such as
change in dendritic length, size, shape and number of synapses
are perceived as hallmarks of long-term memory [89].
Neuronal morphology is controlled by actin filaments and its
regulation influences memory. Subsequently, Rho-ROCK
pathway is an attractive target of interest for drug discovery
works in CNS related disorders. It is recently found that ROCK
pathway is closely related to the pathogenesis of several CNS
disorders like stroke, AD, spinal cord issues, etc. Poor
regeneration of injured axons in adults is observed which is
attributed to the presence of myelin-associated growth
inhibitors for example Nogo, oligodendrocyte-myelin
glycoprotein (OMgp), repulsive guidance molecule (RGM),
and myelin-associated glycoprotein (MAG). It is believed that
the blockade of Rho-ROCK pathway promotes axonal
regeneration and functional recovery of injured CNS which
might further help in reversing the effects of these inhibitors.
The Rho-ROCK pathway is also an important regulator of cell
growth, apoptosis, and migration via regulation of actin
cytoskeleton assembly [89,92]. Reduced cholesterol dependent
and independent mechanisms mediate inhibition of antibody
production by statins. Even though precise molecular
mechanism behind reduction of AP by statins is yet
undetermined, it is believed to be associated with enhancement
of o-secretase activity. Irrespective of depletion in cellular
cholesterol levels, statins inhibit small GTPases such as Rho by
lowering protein isoprenylation via reduction of mevalonate
synthesis [94]. Statin-mediated inhibition of Rho-ROCK
results in either the activation of a-secretase cleavage [95] or
enhancement in APP lysosomal degradation [96], both of
which ultimately result in inhibition of A production.
Contemporary works report inhibition of neurite outgrowth by
AP which is caused through the activation of the Rho-ROCK
pathway in H-SYS5Y neuroblastoma cells [97]. Inhibitory
effects of AP is mediated partly through induction of an
alternatively spliced form of collapsin response mediator
protein-2 (CRMP-2) ie. CRMP-2A and partly by the
upregulated phosphorylation of CRMP-2 by ROCK. Such
findings suggest that Rho-ROCK pathway is not only involved
in AP production but also in AP induced neurite outgrowth
inhibition. This advocates the beneficiary possibilities of Rho-
ROCK blockers in AD treatment.

Prolyl endopeptidase

Prolyl endopeptidase (PEP) is a serine protease enzyme known
to cleave peptide substrates at the C-terminal end of proline
residues. PEP is actively involved in the metabolism of
neuropeptides containing proline such as arginine vasopressin,
thyrotropin-releasing hormone, substance P which controls
learning and memory process [98-100]. It is found widely
distributed among various organs, particularly in the brain of
patients with amnestic disorders. Post-mortem analysis of an
AD patient’s brain reveals significantly increased PEP activity
which suggests PEP inhibitor might serve useful as a
therapeutic target for an anti-amnestic drug. As per recent
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findings, involvement of prolyl endopeptidase-a cytosolic
enzyme belonging to a distinct class of serine peptidase in
processing of C-terminal region of APP has been found in AD
subjects. PEP activity in AD subjects is found to be higher as
compared to that of a healthy person [101]. Reports also
suggest that prevention of memory loss and enhanced attention
span in subjects suffering from senile dementia can be
prohibited through specific PEP inhibition. This was also
reported in scopolamine-treated and dorsal hippocampal-
lesioned rats where memory and learning capability was found
to improve [102]. The memory enhancing effects of PEP
inhibitor (JTP-4819) is attributed to inhibition of metabolic
degradation of brain neuro-peptides by PEP other than
enhancement of ACh release. In addition, release of ACh from
specific brain regions such as frontal cortex, hippocampus, and
regions closely associated with memory is observed as well.
Study of PEP inhibitory activity in phytochemicals has
therefore turned into a necessity.

Monoglycerol lipase

Monoglycerol lipase (MGL) is a serine hydrolase which
converts monoglycerides into fatty acid and glycerol thereby
participating in 2-Arachidonoylglycerol (2-AG) inactivation
[103]. Likewise, in case of pathologies like neuroinflammation,
pain modulation, and neuro-protection; endocanabinoids
system has been postulated as the most suitable target [104].
CB1 and CB2 receptors are endogenous endocannabinoid (EC)
which along with ligands anandamide (AEA), 2-
arachidonylethanolamide, degradation causing enzyme like
fatty acid amide hydrolase (FAAH), and monoglyceride lipase
(MGL) serve as key elements of the EC system [104]. These
are useful in a number of physiological functions such as
immune response, cognitive activity, and motor function. In the
event of a neurological disorder such as AD, Huntington's
disease (HD), multiple sclerosis (MS), etc., study of the
neuroprotective roles of EC systems as well as the modulations
observed in neurotransmission are studied with equal emphasis
[87]. It has been observed in various experimental AD models
that EC system faces imbalance in terms of decreased neuronal
cannabinoid CB1 receptors, increased glial cannabinoid CB2
receptors, and over-expression of FAAH in astrocytes. Post-
mortem report of AD brain and AD animal models have clearly
suggested a protective efficacy of EC system [105].

Catechol-O-methyl transferase

Catechol-O-methyl transferase (COMT) affects levels of
catecholamines viz. dopamine, epinephrine, and norepinephrine
by degradation. It is mediated through dopamine signalling in
the frontal lobes which is the cause of cognitive impairment
[106]. COMT is also a suggested candidate for Alzheimer-
related psychosis (AD-P) susceptibility as well as a functional
association between valine and methionine polymorphism
[106]. Neurotropic factors, like nerve growth factor (NGF),
neurotropin 3 (NT-3) or brain derived neurotropic factor
(BDNF) promote neuron functioning in the peripheral and
central nervous system. These are synthesized in the glial and
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neuronal cells induced by dopamine and other biogenic
amines. Clinical studies have helped to understand the role of
monoamine oxidase B (MAO-B) inhibitors which slows down
the progression of neurological and cognitive deficits in PD
and AD [107]. An increase in biosynthesis of neurotropic
factors mentioned herein is noted upon inhibition of activity
for the extra-neuronal and neuronal located monoamine
oxidase (MAO) enzyme and/or the predominantly glial situated
COMT.

AD and Therapeutic Approaches

Over the years, traditional medicines especially those of herbal
origin have gained tremendous popularity in AD treatment. At
present, extensive research on different plants species is
underway globally [108]. Economic viability, higher
therapeutic window, along with no or less side effects has
helped herbal medicines gain acceptance and fame worldwide
[109]. Plants like St John's wort, Kava-kava, Valerian, Bacopa
monnieri, and Convolvulus pluricaulis are among the ones
most studied for their effectiveness in the treatment of
neurological disorders [110]. Plant studies for AChE activity
include Withania somnifera, Semecarpus anacardium, Embelia
ribes, Tinospora cordifolia, Ficus religiosa, and Nardostachys
jatamansi [111]. Experimental studies confirm the usefulness
of plant extract of Ginkgo biloba in early stages of AD. In the
early stages of AD, it helps patients live a reasonably sound
life. In the same direction, works conducted by Selkoe et al.
confirm that Ginkgo biloba extract has normalising effects on
the ACh receptors found at the severely affected hippocampus
region of the brain, particularly for older subjects [112].
Selective and competitive inhibition of ACh is also possible
with the help of galantamine enzyme. Trails conducted by
researchers have emphasised on the significant improvement in
disease symptoms of AD and dementia as observed upon
treatment with huperzine A [113,114]. Similarly; strong
evidences concerning cognitive function improvement, reduced
agitation, and related therapeutic activity is shown by Melissa
officinalis (also called as ‘lemon balm’) which shows both
nicotinic and muscarinic binding properties in the CNS
[115,116].

As of now, treatment of AD involves drugs which slow down
its progression thereby improving the patient’s cognitive
functions. The pharmaceutical industry at present offers
‘memantine’ as the only available drug approved for the
treatment of mild to severe AD symptoms. It interferes with
the functioning of hippocampal neurons by controlling
glutamatergic excitotoxicity [117]. Other drugs available are
rivastigmine, galantamine, tacrine, and donepezil. Mechanism
of action comprises modulation of brain ACh levels through
anti-cholinestrase inhibition. Treatment with anti-inflammatory
drugs like prednisone [118], diclofenac [119], rofecoxib [120],
and naproxen [121,122] show side effects which is presently
the major drawback in AD treatment. Side effects include
nausea and vomiting. Hepatotoxicity was detected especially in
case of treatment with tacrine, therefore it is rarely used.
Donepezil, when given once a day is easily tolerated along
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with improving mental capabilities in AD patients. Similarly,
rivastigmine works well when given twice a day.

Conclusion

The lack of adequate knowledge on the molecular mechanisms
of AD pathogenesis remains a leading cause underlying
inadequate treatment and mortality. Progressive research has
significantly identified some of the crucial developments of
AD pathology; however, the molecular mechanisms, enzymatic
actions, signaling pathways involved in AD pathogenesis are
not eloquently established. Hence, finding potential
biomarkers, drug targets, development of drugs and novel
delivery systems is a major challenge. Many studies showed
positive and satisfactory outcomes with the usage of herbal
medicine and antioxidants but the clinical effectiveness and
scope of progression in research are limited due to various
factors associated with traditional and herbal medicine. This
indicates the need of early diagnostic modalities, potential
biomarker identification and designing novel inhibitors or
drugs.

The on-going researches in the fields of molecular biology and
biomedical engineering are attempting to unfold the underlying
molecular events and to explore the mechanistic link between
enzymes and AD pathogenesis. It is believed that, in AD
pathogenesis amyloid-degrading enzymes play a significant
role in enzymatic pathway and serve in AP clearance. Among
the number of enzymes involved, it is very crucial and
important to know which of these enzyme(s) are critical and
can be served as potential drug targets and easy to regulate.
Considering the fact that AD pathology develops over many
years, therefore, the early manipulation of these enzymes is
essential as it could reduce the disease progression. Identifying
the link between AD and other pathological events is important
in finding targets. In addition, development of modifiers of AD
may also serve as therapeutics for AD. Pharmacological
approaches are also important to provide economical treatment
options for AD; in addition, development of effective drug
delivery systems other than gene delivery systems such as
exosomes help in avoiding safety and ethical concerns. Within
last two decades, the advancements in biomedical sciences
have provided promising insights into targets, designing of
drugs and other potent therapeutic molecules associated with
AD; therefore, search should be continued to produce ‘anti-
amyloid’ to combat the progression of AD.
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