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Abstract

White Matter (WM) atrophy is a good marker of cognitive decline and progression of Alzheimer’s
disease (AD). Precise segmentation of WM from structural Magnetic Resonance (MR) images is pivotal
in the accurate quantification of WM atrophy. An image processing framework for the accurate
segmentation of WM is proposed in this article. The proposed framework comprises background
removal, restoration of the image with Non-Local Means (NLM) Filter, enhancement with Contrast
Limited Adaptive Histogram Equalization (CLAHE), skull stripping and k-Means segmentation with
histogram guided initialization. The framework exhibited a mean Dice Similarity Index (DSI) of 87.27%
with a standard deviation of ± 5.74, on axial plane MR images of T1 series, from 30 subjects, against
manual segmentation as ground truth.
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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder
characterized by progressive cognitive decline [1].
Approximately forty four million people across the globe are
either direct victims of Alzheimer’s or the dementia caused by
it, indirectly, as per 2016 disease statistics of World
Alzheimer’s Society [2]. Investigations to develop methods for
its early diagnosis is one of the most live areas of Alzheimer's
related research. Early diagnosis of AD enables disease
specific treatment before irreversible brain damage or
cognitive decline occur. As the methods for early detection of
AD, strategies for evaluating the disease progression and the
effect of treatment are also equally important. Objective
biomarkers can supplement subjective methods for evaluating
psychophysiological and mental status, for ruling out AD in its
pre-clinical stage and to assess its progress.

As a part of the efforts to develop biomarkers for the early
diagnosis of AD, Balthazar et al. specifically observed the
involvement of White Matter (WM) atrophy in mild AD [3]. In
line with this observation, Frings et al. reported that annual
decline of temporal WM volume in AD is larger than controls
[4]. Guo et al. also exhibited the confidence that the pattern of
WM volume reductions helps to understand the underlying
pathologic mechanisms in AD [5]. Through a meta-analysis of
the available voxel-based morphometry studies, Li et al. [6]
and Wang et al. [7] confirmed the possibility of WM atrophy in
AD. Migliaccio et al. concluded that the patterns of WM
damage in Early-age Onset Alzheimer's Disease (EOAD) and
in its atypical variants such as logopenic variant of Primary
Progressive Aphasia (lv-PPA) and Posterior Cortical Atrophy

(PCA) are consistent with the psychological symptoms,
cognitive decline and Grey Matter (GM) atrophy patterns [8].

Ouyang conducted multimodal canonical correlation analysis
and joint independent component analysis to identify the
covariance patterns of the grey and white matter atrophy by
fusing structural MR and Diffusion Tensor (DT) images [9].
This literature reported that the GM volume is linked with WM
fractional anisotropy. Agosta et al. also reported significant and
anatomically congruent correlations between WM changes and
regional GM atrophy in patients with AD [10].

Brunetti et al. measured the absolute and fractional volumes of
WM with an unsupervised multi-parametric post-processing
segmentation, based on estimates of relaxation rates (1/T1 and
1/T2) and proton density from spin-echo series [11]. WM
fractions significantly correlated with mini-mental status
examination and blessed dementia scale. Compared with
normal brain segments, AD patients exhibited decreased WM
fractions (-9.79 ± 6 2.47%), with the changes more apparent in
early onset of the disease.

From the above facts it can be concluded that measurement of
WM atrophy from MRI can supplement the information
provided by neuropsychological tests during the diagnosis of
AD and the assessment of its severity. WM atrophy is a good
marker of cognitive decline and progression of AD. It can
reflect the volumetric reduction in GM also.

Accurate segmentation of WM is crucial to identify WM
atrophy. The conventional methods employed in literature for
the segmentation of WM includes Probabilistic Graph Cut
(PGC) [12], the combination of PGCs and Geometric Shape
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Priors (GSP) [13], Fuzzy C-Means (FCM) [14], Density Based
Clustering Approach (DBCA) [15] and Region Growing (RG)
[16].

Apart from the above methods, a K-Nearest Neighbour (KNN)
classifier which uses the spatial as well as intensity information
as its feature vector was used by Anbeek et al. [17]. WM, CSF
and GM were segmented by Thresholding the probability maps
which represents the probability of each voxel to be a member
of a particular tissue class, with respect to an arbitrary
threshold. The method suggested by Cercignani et al. [18] to
segment these tissue classes was based on the 2D histogram of
the mean diffusivity and fractional anisotropy derived from the
DT images. For the simultaneous segmentation of GM, WM
and CSF from image pairs, in N.A. Thacker et al. a series of
linear equations were formed which accounts for the
proportional tissue volumes in individual voxels [19]. The
equations used the prior information of the intensity of pure
tissues to derive the proportion of each tissue within the
voxels.

In Graph Cut based segmentation the minimum cut criteria
sometimes recommend cutting isolated nodes in the graph
because of the minimal cut criteria accomplished when such
nodes are segregated [12,13]. Except, literature none of the
trials were on MR images of AD [14]. However, the
performance of FCM employed in this literature depends on
the degree of fuzzification and most likely FCM produces
empty clusters when employed for segmentation tasks [14].
DBCA segmentation produces satisfactory results if the
morphological structures lie sufficiently apart in the greyscale
space [15]. The performance of region growing heavily relies
on the definition of the initial seed points and the homogeneity
criterion [16]. The efficacy of the segmentation in literature
depends on the selection of the threshold of probability which
decide the membership criterion of voxels to a particular tissue
class [17]. The method suggested by Cercignani et al. is
exclusively applicable to DT images [18]. Generally, T1
weighted images of MRI are used to characterize the WM
atrophy rather than DT. The method suggested by Thacker et
al. [19], offers accurate segmentation results only when at least
one of the images has a good tissue contrast or the intensity of
the tissue classes in the images are just opposite to each other
as in image negatives.

The performance of any segmentation method depends on the
pre-processing, especially restoration and contrast
enhancement, in MR images. As the segmentation methods are
not found viable, a fully automated and comprehensive image
processing framework which comprises algorithms for
restoration as well as enhancement of axial plane structural
MR images and segmentation of WM from the pre-processed
image without the use of any arbitrary constant or manual
intervention is proposed in this article. In section 2 the steps
involved in pre-processing and analytical formulation of k-
Means segmentation algorithm along with its histogram guided
initialization are discussed. In section 3 the segmentation
results produced by the proposed framework is objectively

evaluated with the help of Dice Similarity Index (DSI) against
manual ground truth.

Methodology
The schematic of the image processing framework, proposed in
this article is depicted in Figure 1. The proposed framework
comprises background removal, restoration of the image with
Non-Local Means (NLM) Filter, enhancement with Contrast
Limited Adaptive Histogram Equalization (CLAHE), skull
stripping and k-Means segmentation with histogram guided
initialization. Background removal, restoration and contrast
enhancement fall under ‘pre-processing’. The skull and scalp
regions has to be removed from the MR image before the
segmentation process because k-Means segmentation produces
more reliable outcome when the number of tissue classes are
less. But, the presence of background grid with strong edges in
the MR image makes the gradient or edge based approaches for
skull stripping challenging. Hence, background region is
removed before any further steps. Background is removed by
multiplying the original MR image with a mask [20]. The mask
is constructed by performing a series of morphological
operations on the binary edge map of the MR image. The
binary edge map of the raw MR image is generated by gradient
based Thresholding. The morphological operations performed
on the binary edge map include dilation, hole filling, border
clearing and erosion. Gradient is computed with Sobel mask.
For dilation of the traced edges, horizontal and vertical
structuring elements of length three are used. Erosion is
performed with a diamond strel object with a length one.
Laplacian of Gaussian (LOG) which is an alternative for
gradient threshold edge detection, used in background removal
has a demerit of Spaghetti effect.

Normally, MR images contain Rician distributed noise. The
noise inherent in the image may affect the performance of skull
stripping and segmentation of WM. Ordinary spatial filters like
Gaussian kernel may remove the noise but they hamper the
intensity contrast between GM and WM. Hence, to remove
noise from the background eliminated image, a modified
configuration of NLM filter which adaptively selects its
operational parameters based on the statistics of the noise
inherent in the image is used [21,22]. The radius of the search
window, radius of similarity window and coefficient of noise
variance in the modified NLM are selected as 9, 3 and 7,
respectively. The noise variance is computed using the noise
estimator kernel proposed by Immerkear [23].

The intensity contrast between the WM and GM has to be
improved for the ease of their segmentation. The overall
contrast of the image should be appreciable as an intensity
based method is used for the skull stripping also. Global
Histogram Equalization (GHE) is one of the widely used
contrast enhancement technique in medical image computing.
GHE disturbs the mean intensity of the image and over-
saturates it. In this work, the contrast of the background
eliminated image is improved in the proposed framework by
using Contrast Limited adaptive Histogram Equalization
(CLAHE) [24,25]. CLAHE preserve the mean brightness of the
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image, does not enhance noise and preserves the information
content. The parameter setting of CLAHE suitable for MR
images suggested in literature [26] which is tile size=8 × 8, clip
limit=0.01 and desired shape of the histogram of the contextual
region as ‘exponential’ is followed.

Figure 1. Schematic of the proposed image processing framework.

Similar to the background elimination, the skull and scalp
regions from the MR image, after restoration and enhancement,
are stripped by multiplying the image with a binary
multiplication mask. This binary multiplication mask is
generated by filling the holes in the Largest connected
component with high solidity, in the binary image. In turn, the
binary image is obtained via intensity Thresholding the
enhanced image against an adaptive threshold, computed using
Otsu’s method [27]. The method of brain extraction, based on
LCC is simple and algorithmically feasible.

To segment WM from the extracted brain region k-Means
segmentation is used. k-Means produce tighter clusters than
hierarchical clustering, especially if the clusters are globular. It
is computationally faster than hierarchical clustering. The k-
Means algorithm is initialized by the mean intensity of tissue
classes computed by histogram guided initialization. The
concept of histogram guided initialization is as follows, let ‘μ’
be the vector of mean intensity of different tissue classes
present in the pre-processed MR image,

μ={μ1, μ2, μ3…. μk} and j={0, 1, 2, 3….k}→ (1)

The range of pixel intensities of the pre-processed MR image is
divided into ‘k’ intensity bins, with k+1 intensity points
between the maximum and minimum intensity. Ij= IL+j IH‐ILk (2)
where, ‘k’ is the number of tissue classes, ‘IH’, the maximum
intensity in the pre-processed MR image and ‘IL’, the
minimum intensity. As pointed earlier, minimum number of
tissue classes ‘k’ in the axial plane MR images is four, GM,
WM, CSF and background. The mean of pixel intensities
falling within the bin represent the mean intensity of tissue
class corresponding to that bin as evident in Equation 3

 μ j= ∑i=IjIj+1ini∑i=IjIj+1ni (3)
where ‘i’ is the intensities present in the jth bin and ‘ni’ is the
histogram of these intensities. The tissue class mean, estimated
from histogram guided method is used to initialize the k-Means
algorithm.

k-Means clustering [28] employed for segmenting WM
comprises the steps such as initialization of cluster centres,
initial clustering, and cluster centre updating and final
clustering. In k-Means clustering, let the initialized cluster
centres at the first iteration be, μ I = μ1 I ,μ2 I ,μ3 I ,……,μk I 4
The pixel intensities actually present in the pre-processed MR
image are redistributed to one of the classes or clusters such
that, I  ∈  Cj 1  if I‐μj 1 <I‐μi 1 5
where, i=1, 2, 3,......,k and j=1, 2, 3,……,k but I ≠ j and Cj is
the cluster or tissue class with class mean or cluster centre μj.
Generalizing Equation 5, at the nth iterative step, I  ∈ Cj n  if I‐μj n < I‐μi n 6
Before the (n+1)th iteration, class means or cluster centres are
updated, such that the sum of squared distances from all
samples or intensities in the tissue class or cluster Cj (n) to the
cluster centre is minimized. In fact, new cluster centre is just
mean intensity of the tissue class Cj, μj n+1  =  1Nj∑I ∈ Cj n I j=1,2,3……,k  (7)
where Nj is the number of samples in the cluster Cj at nth
iteration Cj (n) and Nj is the number of intensities in the jth
tissue class in the pre-processed MR image. The algorithm
converges when the condition Equation 8 is satisfied and tissue
class mean updating would be terminated. μj n+1  = μj n  ∀ j = 1,2,3……, k 8
The accuracy of the WM segmentation achieved by the
proposed framework is validated by using DSI [29], with
manual segmentation as the ground truth. DSI is a modified
version of Jaccard Index (JI). The JI estimates what fraction of
the composite volume constituted by the volume computed by
the automated method and ground truth are concordant. Jaccard Index = SA ∩ SMSA ∪ SM (9)
Dice Similarity Index =  2*Jaccard Index1+Jaccard Index (10)
where SA and SM represent the area estimated by automated
strategy and manual ground truth, respectively. The pre-
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processing, segmentation of WM and validation is performed in
Matlab®.

The images used in this study are Structural MR Images of 30
AD patients (15 males and 15 females, mean age: 69.89 ± 9.78
years) and 30 controls (15 males and 15 females, mean age:
65.84 ± 9.63 years), obtained from Hind Labs, Government
Medical College, Kottayam, Kerala, India.

Results
The results of pre-processing and segmentation are depicted in
Figure 2. The figure elaborately demonstrates the results at
intermediate levels of background elimination (Figures 2b-2g)
and skull stripping (Figures 2h-2m), as well.

To prove the efficacy of the proposed image processing
framework, the results of background elimination, restoration,
enhancement and skull stripping on five more test images are
illustrated in Figures 3-7.

Figure 2. (a). Original image 1 (b). Gradient map of the original
image (c). Binary edge map (d). Binary edge map after dilation (e).
Dilated binary edge map after hole filling (f). Hole filled binary edge
map after border clearing and erosion (g). Background eliminated
image (h). Restored image (i). Restored image after contrast
enhancement (j). Enhanced image after intensity thresholding (k).
Largest Connected component (l). LCC after hole filling (m). Skull
stripped image (n). Segmented WM (o). Manual ground truth.

Figure 3. (a). Original image 2 (b). Background eliminated image (c).
Restored image (d). Restored image after contrast enhancement (e).
Skull stripped image (f). Segmented WM (g). Manual ground truth.

Figure 4. (a). Original image 3 (b). Background eliminated image (c).
Restored image (d). Restored image after contrast enhancement (e).
Skull stripped image (f). Segmented WM (g). Manual ground truth.

Figure 5. (a). Original image 4 (b). Background eliminated image (c).
Restored image (d). Restored image after contrast enhancement (e).
Skull stripped image (f). Segmented WM (g). Manual ground truth.

Figures 2a-2g show the raw MR image with background, the
output images at intermediate stages of generation of
multiplication mask for background removal and the
background eliminated image. It is obvious from the gradient
image in Figure 2b that the edges present in the background are
equally strong as that of the boundary of the brain region. If the
edges in the background image grid, they may affect the skull
stripping. The multiplication mask used for background
removal is obtained by performing few steps of morphological
operations on the binary edge map (Figure 2c) generated by
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Thresholding the gradient map in Figure 2b. The dilation
interconnects and links the pixels in the binary edge map as
visible in Figure 2d. Completely connected edges are a
mandatory requisite for the hole-filling to be effective. The
background elimination mask after hole filling is shown in
Figure 2e. Border clearing eliminates the boundary ‘1’s in the
multiplication mask and ‘1’s in its 4-connected
neighbourhoods and smoothen the irregularity at the outer
boundary of the binary multiplication mask. The erosion
excludes the edges present in the background as evident in
Figures 2f and 2g, Figures 3b and Figure 4b, Figure 5b, Figure
6b and Figure 7b confirms the efficacy of the proposed
background elimination strategy on multiple test MR images. It
is apparent from the figures that the structures other than the
morphologies are removed from the raw MR image after
background elimination.

Figure 6. (a). Original image 5 (b). Background eliminated image (c).
Restored image (d). Restored image after contrast enhancement (e).
Skull stripped image (f). Segmented WM (g). Manual ground truth.

Figure 7. (a). Original image 6 (b). Background eliminated image (c).
Restored image (d). Restored image after contrast enhancement (e).
Skull stripped image (f). Segmented WM (g). Manual ground truth.

It is apparent from the restored images in Figures 2h, 3c, 4c,
5c, 6c and 7c that adaptive NLM well preserves the weak
edges between GM and WM while smoothening the noise
inherent in homogeneous regions. It is obvious from the
qualitative inspection of the contrast enhanced images in
Figures 2i, 3d, 4d, 5d, 6d and 7d that CLAHE has good noise
suppression capabilities and the degree of contrast
enhancement is sufficient to support characterization of GM
and WM such that k-Means can yield accurate segmentation
outcomes. It can be observed in Figures 2j, 3e, 4e, 5e, 6e and

7e that the proposed skull stripping is able to extract brain
region from the axial plane T1 images, equally well. As skull
stripping accurately extracts the brain region, effectively
eliminating skull and scalp, the number of tissue classes in the
resultant image comes down and this would enhance the
accuracy of k-Means segmentation algorithm.

The ground truth of WM furnished in Figures 2g, 3g, 4g, 5g,
6g and 7g are contoured from the skull striped images available
in Figures 2m, 3e, 4e, 5e, 6e and 7e. Even after contrast
enhancement the grey level contrast between GM and WM is
not sufficient to allow manual contouring of WM. Hence, the
proposed framework offers WM segmentation better than
manual contouring. It is quite impossible to distinguish the
WM and GM from the original images available in Figures 2a,
3a, 4a, 5a, 6a and 7a, without pre-processing. The cortical WM
segmented by the proposed framework are provided in Figures
2n, 3f, 4f, 5f, 6f and 7f. Against the manual ground truth the
framework exhibited a mean Dice Similarity Index (DSI) of
87.27% with a standard deviation of ± 5.74, on axial plane MR
images of T1 series, from 30 subjects. This reveals that the
WM segmentation produced by the proposed frame work is
appreciable and reliable.

Discussions
The methods available in literature [12-19] have focussed only
on segmentation of WM. But, the reliability of WM
segmentation exclusively depends on the efficacy of pre-
processing, especially when the MR image is noisy and
intensity contrast between GM and WM is insufficient. This
article has introduced a comprehensive image processing
framework comprising restoration, enhancement, skull
stripping and segmentation with special focus on each. The
frame work suggested in this paper is fully automated when
compared to methods like RG [16]. The outcome of RG
exclusively depends on the manually defined seed point.

The methods already existing [12-19] uses arbitrarily defined
parameters. For example, the degree of fuzzification in
literature [14], seed point and the homogeneity criterion used
in literature [16] and threshold of membership probability [17].
Unlike these methods, the proposed framework adaptively
computes the operational parameters of the restoration,
enhancement and segmentation algorithms. For example, the
threshold of gradient modulus, which is an operational
parameter of NLM is computed directly from the standard
deviation of noise in the image, rather than specifying it
manually. Similarly, the initial values of tissue class mean
required for k-Means algorithm is computed adaptively from
the input image itself, using a newly proposed method which is
histogram guided initialization.

The method suggested by Cercignani et al. [18] is exclusively
applicable to DT images. Generally, T1weighted images of
MRI are used to characterize the WM atrophy rather than DT.
The proposed method is designed for T1 weighted images.
Except, literature [14] none of the trials were on MR images of
AD. However, the performance of FCM employed in this
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literature [14] depends on the degree of fuzzification and
mostly FCM produces empty clusters when employed for
segmentation tasks. It has been observed that the k-Means
algorithm used in the proposed framework does not produce
empty clusters. DBCA segmentation [15] produces satisfactory
results if the morphological structures lie sufficiently apart in
the greyscale space. The proposed framework could distinguish
GM and WM structures, without depending on the intensity
contrast between them significantly. The segmentation method
proposed by Thacker et al. works on a pair of images, provided
at least one of the images has a good tissue contrast and the
intensity of the tissue classes in the second image is just the
reverse of the first image [19]. These kind of specific
requirements are not appreciable as far as a segmentation
algorithm is concerned.

In short, the proposed framework is comprehensive, adaptive,
fully automated, exclusively suitable for T1 weighted MRI
series, does not produce empty clusters and its performance
does not depend on contrast between GM and WM. DSI value
of 82% to 93% obtained for the proposed image processing is
reflecting that segmented WM region comply well with the
manually segmented region.

Conclusions
A complete image processing framework for pre-processing
structural MR images and for the segmentation of WM from
the pre-processed image is demonstrated in this article. The
framework exhibited a mean Dice Similarity Index (DSI) of
87.27 with a standard deviation of ± 5.74, on axial plane MR
images of T1 series, from 30 subjects, against manual ground
truth. The proposed image processing framework is able to
extract the brain parenchyma, accurately eliminating skull,
scalp and CSF. The most crucial step in the quantitative
analysis of WM atrophy is the segmentation of WM. WM
atrophy is a pre-clinical indicator of AD and it is one of the
widely used markers for evaluating the disease progression.
Consequently, the proposed image processing framework is
helpful for the early detection and follow-up of AD.

In continuation to the reported study in this paper, statistical
significance of volume computed from the segmented WM to
characterize Alzheimer’s related atrophy can be evaluated. The
proposed image processing framework can be further modified
to devise a scheme for GM segmentation. Perhaps, the whole
brain, WM and GM volumes may collectively offer better
specificity and sensitivity during the diagnosis of AD in its
preclinical stage.
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