Advancing public health: Innovative approaches to combat antibiotic-resistant bacteria in food systems.

Anya Meh*

Department of Biotechnology, Indian Institute of Technology Delhi, India

Introduction

The rise of antibiotic-resistant bacteria in the global food supply presents a growing threat to public health, food security, and economic stability. As bacteria evolve mechanisms to withstand antimicrobial agents, traditional methods of food preservation and safety are being challenged. Food microbiology now faces an urgent need to innovate and implement robust strategies that address antimicrobial resistance (AMR) at every stage of food production and distribution [1].

Antibiotic-resistant bacteria such as Salmonella, Escherichia coli, and Listeria monocytogenes are increasingly found in raw and processed foods, particularly those of animal origin. These pathogens not only cause foodborne illnesses but also contribute to the broader crisis of antibiotic inefficacy in clinical settings. This article explores how modern food microbiology is responding to this emerging crisis through advanced detection, monitoring systems, and alternative antimicrobial strategies [2].

Redefining Food Safety through Antimicrobial Stewardship Antimicrobial resistance in food systems often originates from the overuse of antibiotics in livestock farming, aquaculture, and crop production. These resistant bacteria can enter the human food chain through undercooked meat, contaminated water, or cross-contamination during processing [3].

To combat this, antimicrobial stewardship must be integrated into food production practices. This involves minimizing antibiotic use in agriculture, enforcing withdrawal periods, and promoting the use of probiotics, prebiotics, and bacteriophages as safer alternatives. Additionally, enforcing hygiene and sanitation standards in processing facilities can reduce the prevalence of resistant strains [4].

Advanced Technologies in Detecting Antibiotic ResistanceOne of the significant challenges in managing AMR in food microbiology is early and accurate detection. Conventional culture-based methods are time-consuming and often insufficient for detecting resistance genes. Modern molecular techniques such as quantitative PCR, wholegenome sequencing (WGS), and DNA microarrays offer precise tools for identifying resistance markers and tracking their transmission routes. These technologies facilitate the development of predictive models and risk-based surveillance

frameworks that help stakeholders make informed decisions about interventions [5].

Alternative Strategies: Beyond Antibiotics As the efficacy of antibiotics declines, researchers are turning to innovative solutions to inhibit bacterial growth and transmission. Natural antimicrobials such as plant extracts, essential oils, and peptides are gaining attention for their ability to control resistant pathogens without promoting further resistance [6].

Moreover, bacteriophage therapy—using viruses that specifically target bacteria—is being explored as a highly selective and sustainable alternative. When incorporated into food coatings or packaging, these biological agents can actively reduce microbial load and extend shelf life without harmful residues. Interdisciplinary Collaboration for Safer Food Systems Tackling antibiotic resistance requires a multipronged, One Health approach involving scientists, food producers, regulators, and public health officials. Standardizing AMR monitoring protocols and ensuring transparent data sharing between nations is vital to tracking resistance trends and controlling outbreaks effectively [7, 8].

Education and capacity-building efforts are also crucial. Farmers, food handlers, and consumers must be made aware of AMR risks and the importance of responsible antibiotic use to ensure food safety and safeguard public health [9, 10].

Conclusion

Antibiotic resistance poses a formidable challenge to the global food supply chain, demanding immediate and coordinated action across disciplines. By embracing technological innovations, promoting antimicrobial stewardship, and fostering global cooperation, food microbiology can rise to the occasion and protect future generations from the looming threat of resistant infections. Sustainable and science-driven solutions will be key in transforming food safety practices and ensuring a resilient food system.

Reference

1. Kitabchi AE, Umpierrez GE, Fisher JN, et al. Thirty years of personal experience in hyperglycemic crises: Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Clin Endocrinol Metab. 2008;93(5):1541-52.

Received: 01-May-2025, Manuscript No. AAFMY-25-166739; Editor assigned: 02-May-2025, PreQC No. AAFMY-25-166739(PQ); Reviewed: 16-May-2025, QC No. AAFMY-25-166739; Revised: 21-May-2025, Manuscript No. AAFMY-25-166739(R); Published: 28-May-2025, DOI:10.35841/aafmy-9.3.266

^{*}Correspondence to: Anya Meh, Department of Biotechnology, Indian Institute of Technology Delhi, India. E-mail: ana.ma@iitd.ac.in

- 2. Balasubramanyam A, Zern JW, Hyman DJ, et al. New profiles of diabetic ketoacidosis: Type 1 vs type 2 diabetes and the effect of ethnicity. Arch Intern Med. 1999;159(19):2317-22.
- 3. Lee SH, Park JH, Hong MK, et al. True euglycemic diabetic ketoacidosis in a person with type-2 diabetes and Duchenne muscular dystrophy. Diabetes Res Clin Pract. 2011;92(1):7-8.
- 4. Modi A, Agrawal A, Morgan F. Euglycemic diabetic ketoacidosis: A review. Curr Diabetes Rev. 2017;13(3):315-21.
- Westphal SA. The occurrence of diabetic ketoacidosis in non-insulin-dependent diabetes and newly diagnosed diabetic adults. Am J Med. 1996;101(1):19-24.

- 6. Franzen R, Tois J. Purine and sugar chemistry on solid phase-100 years after the Emil Fischer's Chemistry Nobel Prize 1902. Comb Chem High Throughput Screen. 2003;6(5):433-44.
- 7. Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-antigen recognition. Front Immunol. 2013;4:302.
- 8. Sundberg EJ, Mariuzza RA. Molecular recognition in antibody-antigen complexes. Adv Prot Chem. 2002;61:119-60.
- Gomez-Garcia M, Benito JM, Butera AP, et al. Probing carbohydrate-lectin recognition in heterogeneous environments with monodisperse cyclodextrin-based glycoclusters. J Org Chem. 2012;77(3):1273-88.
- 10. Alemany A, Sanvicens N, Lorenzo SD, et al. Bond Elasticity Controls Molecular Recognition Specificity in Antibody— Antigen Binding. Nano letters. 2013;13(11):5197-202.