Advancements in targeted and personalized therapies.

Sofia Martinez*

Department of Biomedical Sciences, University of Buenos Aires, Argentina

Introduction

This article lays out the significant potential and ongoing challenges of using CRISPR-Cas9 genome editing for treating cancer. It covers how this technology can specifically target cancer cells and the critical role of effective delivery systems to make these treatments viable in a clinical setting. What this really means is, while the promise is huge, getting it into the right cells without causing unwanted effects is the main hurdle [1].

Here's the thing about RNA therapeutics: they've moved from theoretical concepts to highly effective treatments. This review looks back at the journey of RNA-based medicines, from mRNA vaccines and small interfering RNAs (siRNAs) to antisense oligonucleotides. It also provides a clear vision for where these therapies are heading, showing their versatility across a broad range of diseases beyond just infectious ones [2].

This paper highlights the growing strategy of using small molecules to target protein-protein interactions (PPIs) that are often aberrant in cancer. Many cancers rely on these specific interactions for growth and survival, so disrupting them with carefully designed small molecules offers a powerful way to selectively interfere with disease progression. It's about finding the critical handshake that fuels the cancer and breaking it up [3].

Let's break it down: exosomes are tiny vesicles released by cells, and this article makes a strong case for their use in gene therapy, especially for neurological disorders. They act as natural carriers, protecting genetic material and delivering it across biological barriers like the blood-brain barrier. This approach offers significant advantages over traditional viral vectors, suggesting a safer and more targeted way to treat complex brain conditions [4].

CAR T-cell therapy has revolutionized blood cancer treatment, but applying it to solid tumors is a different beast entirely. This review dives into the specific hurdles faced when using CAR T-cells against solid tumors, such as navigating the suppressive tumor microenvironment and ensuring sufficient cell infiltration. It also outlines innovative strategies researchers are exploring to overcome these challenges, paving the way for broader applicability [5].

Antibody-drug conjugates, or ADCs, are highly potent targeted therapies that link a powerful chemotherapy drug to an antibody, allowing precise delivery to cancer cells. This paper reviews the current state of ADCs, detailing their mechanisms and how they're being used in clinics. It also looks at the ongoing advancements aimed at improving their efficacy and reducing side effects, which is a big deal for personalized oncology [6].

This article gives a clear overview of the journey gene editing has taken in addressing genetic disorders. It covers the popular tools like CRISPR-Cas9, base editing, and prime editing, highlighting how these technologies can correct disease-causing mutations at a fundamental level. While progress has been swift and impressive, the review doesn't shy away from discussing the remaining challenges in terms of safety and precise delivery [7].

Precision medicine in oncology is really about tailoring treatments to an individual's unique genetic makeup. This paper explains the transition from general cancer treatments to highly specific, targeted therapies, driven by advanced molecular diagnostics. By understanding the specific mutations in a patient's tumor, doctors can select drugs that are much more likely to be effective, moving us closer to truly personalized cancer care [8].

What this really means is, oligonucleotide therapeutics are showing tremendous promise for neurodegenerative diseases. This review delves into how drugs based on short strands of nucleic acids, like antisense oligonucleotides (ASOs) and siRNAs, can interfere with disease-causing gene expression. It highlights their potential to precisely target underlying pathology in conditions such as Alzheimer's, Parkinson's, and Huntington's disease, offering new avenues for treatment [9].

Advances in nanotechnology are significantly enhancing how we deliver drugs, especially for cancer therapy. This article covers how nanoparticles can be engineered to specifically target tumor cells, improving drug concentration at the disease site while minimizing systemic toxicity. It's about making treatments more effective and safer by precisely guiding the medication to where it's needed most [10].

*Correspondence to: Sofia Martinez, Department of Biomedical Sciences, University of Buenos Aires, Argentina. E-mail: sofia.martinez@uba.edu.ar

Received: 03-Apr-2025, Manuscript No. aatr-182; **Editor assigned:** 07-Apr-2025, Pre QC No. aatr-182 (*PQ*); **Reviewed:** 25-Apr-2025, QC No. aatr-182; **Revised:** 06-May-2025, Manuscript No. aatr-182 (*R*); **Published:** 15-May-2025, DOI: 10.35841/aatr-9.2.182

Conclusion

Recent advancements in therapeutic strategies are revolutionizing how we approach various diseases, particularly cancer and genetic disorders. CRISPR-Cas9 genome editing offers significant potential for cancer treatment, although effective delivery remains a major hurdle. RNA therapeutics, including mRNA vaccines, Small Interfering RNAs (siRNAs), and Antisense Oligonucleotides (ASOs). have transitioned from theoretical concepts to impactful treatments, demonstrating broad versatility. Small molecules are increasingly used to target aberrant Protein-Protein Interactions (PPIs) crucial for cancer growth, providing a selective way to disrupt disease progression. Exosomes are emerging as promising natural carriers for gene therapy, especially for neurological disorders, offering advantages over traditional viral vectors by safely delivering genetic material across barriers like the blood-brain barrier. CAR T-cell therapy, while transformative for blood cancers, faces challenges in solid tumors due to the suppressive tumor microenvironment, necessitating innovative strategies for broader application. Antibody-Drug Conjugates (ADCs) represent a potent class of targeted therapies, linking powerful chemotherapy to antibodies for precise cancer cell delivery, with ongoing efforts to enhance efficacy and reduce side effects in personalized oncology. Gene editing technologies such as CRISPR-Cas9, base editing, and prime editing, are making swift progress in correcting disease-causing mutations for genetic disorders, even as safety and precise delivery challenges persist. Precision medicine in oncology is evolving rapidly, driven by advanced molecular diagnostics that enable tailoring treatments to individual genetic profiles. Oligonucleotide therapeutics show immense promise for neurodegenerative diseases by interfering with gene expression to target underlying pathology. Finally, nanotechnology is enhancing drug delivery, particularly for cancer, by engineering nanoparticles to target tumors specifically, improving drug concentration and minimizing systemic toxicity. These diverse approaches highlight a collective move towards more targeted, effective, and personalized treatment paradigms.

References

- Mengchen X, Hongwei Z, Qianqian H. CRISPR-Cas9-mediated genome editing for cancer therapeutics. Signal Transduct Target Ther. 2021;6:320.
- Michael C, Ryan C, John M. RNA therapeutics: A review of the past and a look to the future. J Am Acad Dermatol. 2023;89:111-120.
- 3. Yi L, Kai C, Min Y. Small molecule therapeutics targeting protein-protein interactions in cancer. *Eur J Med Chem.* 2023;260:115764.
- Xiaoyu S, Qiang Z, Minglu Z. Exosome-based gene therapy: A promising strategy for targeting neurological disorders. Mol Ther Nucleic Acids. 2023;32:109-126.
- Shichuan Z, Xiaokun L, Yiting M. CAR T-cell therapy in solid tumors: A comprehensive review of current challenges and future perspectives. Mol Ther Oncolytics. 2023;29:153-172.
- Yifan Z, Junqiang Z, Ying L. Antibody-drug conjugates: Current landscape and future perspectives. Eur J Med Chem. 2024;265:116035.
- Yixin L, Fang W, Yuqi L. Gene editing strategies for genetic disorders: Progress and challenges. Mol Ther. 2022;30:99-114.
- 8. Xiaomin L, Yanfen C, Li G. Precision medicine in oncology: From molecular diagnostics to targeted therapies. Front Pharmacol. 2021;12:686252.
- 9. Wen-Jun L, Hao H, Lin H. Oligonucleotide therapeutics for neurodegenerative diseases. CNS Neurosci Ther. 2023;29:1655-1669.
- Lingyu H, Jing L, Yuanyi L. Advances in nanotechnology-based drug delivery systems for cancer therapy. *Acta Pharmacol Sin.* 2021;42:849-869.

Citation: Martinez S. Advancements in targeted and personalized therapies. aatr. 2025;09(02):182.

aatr, Volume 9:2, 2025