Advanced image segmentation techniques for accurate isolation of abnormality to enhance breast cancer detection in digital mammographs.

Vedanarayanan V¹, Nandhitha NM²

¹Research Scholar, Sathyabama University, India

²Department of Electronics and Communication Engineering, Sathyabama University, India

Abstract

In recent years, extensive research is carried out in Computer Aided Interpretation of digital mammograms for breast cancer classification. Computer aided Interpretation of digital mammograms involves pre-processing, contrast enhancement, segmentation, appropriate feature extraction and classification. Though considerable research is carried out in developing contrast enhancement and image segmentation techniques, cancer regions could not be isolated and extracted efficiently. Also appropriate features which best describe the cancer characteristics were not found. Hence this work focuses on developing efficient image segmentation techniques for isolating the cancer region and also identifying suitable descriptors for describing the cancer region. Modified Expectation Maximization and modified snake algorithm are developed for isolating the abnormality. Area, Minor Axis Length, Major Axis Length, Perimeter, Orientation, Centroid, Eccentricity, EquivDiameter, Solidity and convex area are the features used for describing abnormality. Back Propagation Network is used for determining the presence and absence of cancer in mammograms. Sensitivity of the proposed techniques is 100%.

Keywords: Digital mammograms, Modified snake algorithm, Modified expectation maximization algorithm, Back propagation network.

Introduction

Breast cancer is the most commonly occurring disease in women which proves fatal in most cases. In recent years, various diagnostic techniques are developed to identify breast cancer. These techniques include digital mammograms, Infrared thermographs (IR), Computed Tomography (CT), Positron Emission Tomography (PET) etc. [1]. Of all these techniques, digital mammograms are regarded as golden standard for breast cancer detection [2]. X-ray is passed through the region under observation and is detected on thin films at the other end. When X-Ray passes through cancer cells, it is absorbed and hence it appears as high intensity regions in mammograms. On the other hand, in the absence of cancer X-rays penetrate well and deep, hence that portion of the film appears dark or black. The task of radiologists is to analyse the radiographs and determine the intensity difference to identify cancer regions. Even to an expert radiologist, manual interpretation is difficult for low contrast radiographs. Hence, it is necessary to highlight the region of interest through various contrast enhancement techniques on the mammograms. Ankita et al. have done an extensive survey of different image enhancement methods digital for mammographs [3]. Image segmentation is to be performed to isolate the region of interest. Sukassini et al. had studied

Accepted on November 12, 2016

different segmentation techniques for digital mammographs in detail [4]. After isolating the region of interest; suitable descriptors are used to describe the cancer region. These features are used to generate exemplars which in turn can be used for training the BPN. Hence the research work aims at developing a suitable image enhancement and segmentation technique for isolating the cancer region completely.

This paper is organised as follows. Section 2 deals with research database and mammograph pre-processing. In section 3, the proposed segmentation techniques are explained. Six layered Back Propagation Network based classifier is discussed in section 4. Conclusion and future work is discussed in Section 5.

Research database and mammograph pre-processing

The steps involved in computer aided analysis of mammograms are mammograph acquisition, mammograph pre-processing, contrast enhancement, segmentation, quantitative characterization and classification [5]. In order to perform the research work a set of 50 mammograms were collected from various scan centres in Chennai, India. Of these mammograms, two are of normal persons and the remaining 48 mammograms depict cancer. Five mammograms which best describe normal and cancer conditions are shown in Figure 1.

Figure 1. Five mammographs of normal and cancerous persons.

From the subjective analysis of these mammograms, it is found that cancer region appears has high intensity pixels in mammograms. Owing to the nature of human physiology few undesirable high intensity regions are also present in mammograms. Hence it is necessary to pre-process the radiographs. In order to reduce the computational complexity, the colour image is converted into grey scale image. After preprocessing the mammographs, contrast is enhanced using Gabor filter.

Advanced image segmentation techniques

On the contrast enhanced images, segmentation techniques are used to isolate the abnormality region [6]. In this work modified expectation Maximization technique and modified snake algorithm are used.

Modified expectation maximization method: Expectation maximization algorithm is widely used when the data set contains missing or hidden values. Most biological datasets have this kind of problem. This is due to the problems in the observations or collection of data's. All kind of biological analysis is carried on the data's obtained with limited test only. Expectation maximization algorithm involves in guessing an initial value and increasing the probability of acceptance of that initial parameter [7]. This is done in an iterative way. Maximization step is used to evaluate the parameter and if it is not good then discarded and a new guess is done. In contrast to the conventional EM technique, in improved EM, the mean of the missing value is estimated. This kind of statistical estimation helps in reducing the errors which occur in Markov models. The steps involved in Improved EM are shown below:

- Read the image and convert it to grey scale
- Calculate the upper and lower threshold values of the Enhanced image
- Adjust the mean value based on the threshold values
- Evaluate the no of clusters (E step)
- Update the cluster mean value (M step)
- Based on the clusters, the abnormality is segmented.

The original and the output images are shown in Figure 2. From the second column of Table 1, it is found that the abnormality regions are isolated accurately.

Figure 2. Original and segmented outputs (Improved EM method).

 Table 1. Quantitative characterization of abnormality isolated by EM method.

Image	Area	Major axis length	Orientation	Perimeter	Centroid	Extrema	Convex area	Solidity	Eccentricity	Equiv diameter	Minor axis length
1_small.jpg	14162	183.2055	57.6488	587	209.2732	231.5	15165	0.9339	0.8319	134.2819	101.6591
2_small.jpg	13506	177.79	-86.2263	665	172.1331	168.5	14880	0.9077	0.8248	131.1349	100.5351
3_small.jpg	10644	756.7651	-85.3654	2230	115.5615	1.5	150076	0.0709	0.8149	116.4146	438.6437
4_small.jpg	10444	760.9611	-86.0597	2230	117.6051	1.5	150076	0.0696	0.8131	115.3157	443.0261
5_small.jpg	10937	765.1262	-87.6051	2220	115.4141	1.5	150076	0.0729	0.8133	118.006	445.1632
6_small.jpg	10686	756.6839	-84.7703	2220	116.4376	1.5	150076	0.0712	0.8145	116.6441	439.0256
7_small.jpg	10682	749.747	-84.2881	2220	119.2128	1.5	150076	0.0712	0.8075	116.6222	442.2759
8_small.jpg	24447	297.6198	67.1191	2220	236.1883	1.5	150076	0.7288	0.907	176.4281	125.3241
9_small.jpg	10407	769.2389	-87.0142	2220	216.8673	1.5	150076	0.0693	0.817	115.1113	443.6133

Advanced image segmentation techniques for accurate isolation of abnormality to enhance breast cancer detection in digital mammographs

10_small.jpg	10725	769.9002	88.2337	2220	217.0283	1.5	150076	0.0715	0.8117	116.8567	449.6466
11_small.jpg	1054	124.6638	8.9493	327	38.1214	1.5	150076	0.4081	0.9746	36.6332	27.9239
12_small.jpg	10872	744.0258	-83.3116	2210	29.2201	1.5	150076	0.0724	0.8063	117.6548	440.069
13_small.jpg	1478	51.1846	11.1636	256	230.2463	1.5	150076	0.7549	0.4747	43.3803	45.0494
14_small.jpg	745	100.215	-16.5445	279	25.2148	1.5	150076	0.2884	0.9321	30.7988	36.2867
15_small.jpg	10688	772.4566	89.4908	2220	116.3498	1.5	150076	0.0712	0.8183	116.655	444.0151
16_small.jpg	11196	761.9056	-85.7378	2220	218.1693	1.5	150076	0.0746	0.8121	119.3951	444.5366
17_small.jpg	10991	756.1269	-85.2428	2210	219.5143	1.5	150076	0.0732	0.0732	118.297	440.3588
18_small.jpg	12377	772.5146	-80.797	2440	189.6908	1.5	150076	0.0825	0.7725	125.5344	490.5579
19_small.jpg	10318	769.9965	-85.8297	2220	212.6296	1.5	150076	0.0688	0.8156	114.618	445.5694
20_small.jpg	10461	754.2772	-84.6163	2220	219.5664	1.5	150076	0.0697	0.8135	115.4095	438.6398
21_small.jpg	9784	758.9153	78.2869	2060	39.9543	1.5	150076	0.0737	0.8505	111.6126	399.2046
22_small.jpg	11170	727.2664	-80.0906	2220	116.3659	1.5	150076	0.0744	0.8008	119.2564	435.5757
23_small.jpg	10715	761.108	-85.4885	2220	117.6103	1.5	150076	0.0714	0.8145	116.8022	441.5587
24_small.jpg	18565	691.2519	69.0644	3220	220.7975	1.5	150076	0.1237	0.7437	153.7455	462.1258
25_small.jpg	571	52.6903	-7.5053	169	1079	1.5	150076	0.5292	0.8501	26.9633	27.751

Modified snake algorithm: In order to reduce the computational complexity modified snake algorithm is used for segmenting the abnormality. In general snakes are used for identifying the abnormality of irregular shape. Snake algorithm uses an energy minimising function [8-12]. Snake algorithm is mostly widely used for segmentation of images which contains irregular shape objects. Snake algorithm uses an energy function. This function is a combination of two forces namely internal and external. The internal force is calculated from the shape of the region of interest and the external force is calculated from a higher knowledge about that image. The energy function focuses on three components namely Curvature, Continuity and image gradient. If the edges are smooth then the curvature value should be kept high. In contrast to the conventional snake algorithm, snakes are initially generated by using the histograms. Steps involved in the proposed algorithm are as follows: Initially from the colour image, the mask image is generated. After generating the mask image, it is applied on the original image and the dissimilarity matrix is generated. After a threshold value the snake adjusts itself to reflect the actual abnormality region. The original and the output images are shown in Figure 3. From the figures in the last column of Table 2, it is found that this technique also isolates the abnormality effectively.

In both cases, abnormality is described by Area, Minor Axis Length, Major Axis Length, Perimeter, Orientation, Centroid, Eccentricity, EquivDiameter, solidity and Convex area. These descriptors are shown in Tables 1 and 2 for improved EM and Modified snake algorithm [13,14]. These parameters are used as input parameters for generating the exemplars to train the neural network.

Figure 3. Original and segmented outputs (Modified snake method).

Table 2. Quantitative characterization of abnormality isolated by Modified snake method.

Image	Area	Major length	Axis	Orientation	Perimeter	Centroid	Extrema	Convex area	Solidity	Eccentricity	Equiv Diameter	Minor Length	Axis
-------	------	-----------------	------	-------------	-----------	----------	---------	----------------	----------	--------------	-------------------	-----------------	------

1_small.jpg	2782	381.1786	-83.6799	1130	57.1736	0.5	37632	0.0739	0.8205	59.516	217.9055
2_small.jpg	4390	96.0545	-88.9618	269	85.8852	0.5	4564	0.9619	0.7841	74.7631	59.6162
3_small.jpg	2715	379.1589	-84.98	1110	58.3153	0.5	37632	0.0721	0.815	58.7949	219.7077
4_small.jpg	2744	381.3371	-86.4567	1110	59.9016	0.5	37632	0.0729	0.8108	59.1081	223.1942
5_small.jpg	3343	384.9321	78.1146	1180	73.5965	0.5	37632	0.0888	0.7686	65.2414	246.2714
6_small.jpg	2702	379.6748	-84.7985	1110	58.5848	0.5	37632	0.0718	0.8158	58.654	219.5654
7_small.jpg	3047	385.895	87.2854	1140	68.7939	0.5	37632	0.081	0.7837	62.2861	239.6949
8_small.jpg	9478	161.303	74.8697	459	119.2717	0.5	10906	0.8691	0.8429	109.8534	86.7846
9_small.jpg	4230	96.3049	-70.9107	280	28.918	0.5	4501	0.9398	0.7887	73.388	59.2063
10_small.jpg	5058	349.3489	-64.4684	1300	71.123	0.5	37632	0.1344	0.7307	80.2499	238.483
11_small.jpg	7618	124.1984	76.8212	374	96.6533	0.5	8191	0.93	0.756	98.4862	81.2948
12_small.jpg	9137	160.5529	58.741	449	112.257	0.5	10191	0.8966	0.8724	107.8591	78.4716
13_small.jpg	4045	91.9671	-55.8968	261	106.308	0.5	4255	0.9506	0.7849	71.7653	56.9841
14_small.jpg	3723	95.6584	86.5118	254	117.6068	0.5	3860	0.9645	0.8494	68.8496	50.4768
15_small.jpg	4988	105.6116	81.4447	291	136.9493	0.5	5268	0.9468	0.8035	79.6927	62.878
16_small.jpg	6377	305.4289	-60.2024	1310	62.0182	0.5	37632	0.1695	0.6957	90.108	219.4082
17_small.jpg	4338	96.2214	55.7126	263	103.7937	0.5	4466	0.9713	0.7928	74.319	58.6471
18_small.jpg	15128	251.6818	-88.3735	780	50.2688	0.5	37632	0.402	0.7101	138.7861	177.2085
19_small.jpg	11209	168.7713	89.31	448	36.3406	0.5	11309	0.9912	0.8461	119.4644	89.9691
20_small.jpg	2902	372.6751	-83.9865	1110	114.1082	0.5	37632	0.0771	0.8109	60.786	218.0975
21_small.jpg	2908	381.1175	86.1361	1110	110.5519	0.5	37632	0.0773	0.8076	60.8488	224.7676
22_small.jpg	2915	360.3139	-80.5463	1110	58.5674	0.5	37632	0.0775	0.7902	60.922	220.8233
23_small.jpg	16137	188.9875	88.4375	521	122.0525	0.5	16260	0.9924	0.7989	143.3397	113.6575
24_small.jpg	19470	240.0864	79.177	780	112.3087	0.5	37632	0.5174	0.734	157.4483	163.0669
25_small.jpg	168	193.9897	0	334	84.5	0.5	168	1	1	14.6255	1.1547

BPN based classifier: Back propagation network (BPN) is a kind Multi-layer Artificial Neural network which tries to mimic the human decision making process. Back propagation neural network is a supervised training algorithm [15-17]. Back Propagation Network (BPN) uses Gradient descent function which is also known as squashing function to reduce the training error. Back propagation network is much faster than conventional perceptron network. This network uses iterative differentiable activation function so that the error is squashed or reduced to a minimum value. At this stage the desired output matches with the actual output of the network. It has three phases. They are [18] feed forward [19] Error calculation and Error back propagation process [20] weight updating. BPN is used widely for its mathematical simplicity. A six layered Back Propagation Network is used for classification. Number of neurons in the input layer is 11 and one neuron is used at the output layer. Three hidden layers with 22, 11 and 5 neurons are used. "Tansigmoidal" and "purelinear" are the activation functions used at the hidden and the output layers respectively. Learning and momentum

parameters are 0.1 and 0.6 respectively. Two different datasets are used for training and testing the neural network. Sensitivity is calculated for exemplars obtained from two segmentation techniques. Relationship between the desired and the actual values are shown in Table 3. From the Table 3, it is found that the sensitivity is 100% for both the segmentation techniques [21].

S. No	Desired	Actual values for improved EM method	Actual values for improved snake method
1	1	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	1	1	1

Advanced image segmentation techniques for accurate isolation of abnormality to enhance breast cancer detection in digital mammographs

6	1	1	1
7	1	1	1
8	1	1	1
9	1	1	1
10	1	1	1
11	1	1	1
12	0	0	0

Conclusion and Future work

Two different advanced image segmentation techniques namely improved EM and modified snake algorithm are developed successfully. Region and boundary descriptors are used for quantitatively characterizing the abnormality. These descriptors are used for generating exemplars to train and test the neural network. Based on trained data, the proposed six layered architecture has successfully classified the abnormality from the digital mammographs. Sensitivity of the classifier is 100% for both the two different set of exemplars.

Acknowledgement

The authors acknowledge the various scan centres in Chennai-India which provided the real time images for their research work.

References

- 1. Lee H, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, Burhenne LW. Breast cancer screening with imaging: recommendations from the society of breast imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol 2010; 7: 18-27.
- 2. American Cancer Society. Breast cancer facts and figures 2013-2014. Atlanta Ga Am Cancer Soc 2013.
- 3. Ankita P, Singh S, Pandey A. Review: On performance metrics for quantitative evaluation of contrast enhancement in mammograms. Int J Comp Appl 2013; 75: 17.
- Sukassini MP, Velmurugan T. A survey on the analysis of segmentation techniques in mammogram images. Indian J Sci Technol 2015; 8: 22.
- Valarmathi P, Radhakrishna V. Tumor prediction in mammogram using neural network. Glob J Comp sci Technol Neur Artif Intel 2013; 2: 19-24.
- 6. George YM. Breast fine needle tumor classification using neural networks. Int J Comp Sci Iss 2012; 9: 247-256.
- Chang HP, Wei D, Helvie MA, Sahiner B, Adler DD, Goodsitt D, Petrick N. Computer-aided classification of mammographic masses and normal tissue: Linear discriminant analysis in texture feature space. Phys Med Biol 1995; 40: 857-876.

- Jalalian A, Mashohor SB, Mahmud HR, Saripan MI, Ramli AR. Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin Imaging 2013; 37: 420-426.
- 9. Guo M. A new method for mammographic mass segmentation based on parametric active contour model, Wavelet Analysis and Pattern Recognition (ICWAPR). Int Conf Dat Conf 2015; 27-33.
- Tarver T. Cancer Facts and Figures. American Cancer Society (ACS). J Consu H Intern 2013, 366-367.
- Rao TVN, Govardhan A. Efficient segmentation and classification of mammogram images with fuzzy filtering. Ind J Sci Technol 2015; 8: 15.
- 12. Durgadevi G, Shekhar H. An intelligent classification of breast cancer images. Indian J Sci Technol 2016; 9: 28.
- 13. Sandhya G, Vasumathi D, Raju GT. Mammogram Image segmentation quality enhancement using clustering techniques 2004; 4: 153-158.
- 14. Kamalakannan J, Thirumal T, Vaidhyanathan A, MukeshBhai MD. Study on different classification technique for mammogram image. Circuit, Power and Computing Technologies (ICCPCT). Int Conf Nagercoil 2015; 1-5.
- 15. Priyanka BB, Kulkarni DA. Digital mammography: a review on detection of breast cancer. Int J Adv Res Comp Commun Eng 2016; 5: 386-390.
- Vaidehi K, Subashini TS. A global approach for detecting mass in Digital Mammograms. Int J Adv Res Technol 2012; 1: 6.
- Chaiyakhan K, Kerdprasop N, Kerdprasop K. Feature selection techniques for breast cancer image classification with support vector machine. Proc Int Multi Conf Eng Comp Sci Hong Kong 2016.
- 18. Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y. Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inf Technol Biomed 2009; 13: 236-251.
- 19. Dougherty G. Medical image processing: techniques and applications. Springe 2011.
- 20. Bovik C. Handbook of image and video processing. Boca Raton CRC Press (2nd Edition.) 2011.
- Jehlol HB. Classification of mammography image using machine learning classifiers and texture features. Int J Innov Res Adv Eng 2015; 9: 56-63.

*Correspondence to

Vedanarayanan V

Research Scholar, Sathyabama University,

India