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Abstract

Medical imaging is a useful technique for disease diagnosis and it has many applications in the medical
field. There are several techniques used for medical imaging. Among them compression sensing (CS)
technique has been widely accepted because of the low sample requirement and accurate recovery of
image. In this paper, a novel adaptive matching pursuit for compressive sensing of blind sparsity
biological signal polluted by noise is proposed. First, the traditional quadratic loss function is replaced
with the more robust Huber loss function for the purpose of combating the influence of noise. Then,
sparsity adaptive matching pursuit is introduced to make optimal estimation of the original biological
signal and further reduce the influence of noise, thereby achieving accurate reconstruction of biological
signal with blind sparsity. Simulation results indicated that the proposed algorithm greatly improves the
anti-noise performance, especially in resisting large noise uncertainty compared with existing greedy
algorithms.
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Introduction
Imaging has a wide range of applications in medical field such
as disease diagnosis, detection, and identification of patients’
response to the therapy [1]. Image quality is vital for a
Clinician to make correct clinical decisions. Shannon-Nyquist
theorem aims at giving the minimal frequency needed to
sample and reconstruct perfectly an analog band-limited signal
[2]. Compared with the traditional Nyquist sampling theory,
the compression sensing (CS) technique allows biological
signal to be reconstructed using fewer samples by exploiting
sparsity of the signal over a certain domain [3]. This property
makes CS a promising method for collection and processing of
sparse signal in recent years. Therefore, CS is widely used in
biological, medical, image/signal processing and many other
fields. CS is used in magnetic resonance imaging (MRI),
computerized tomography (CT) scanning for image
reconstruction and has been widely accepted for dealing
samples which are either costly or difficult to obtain. [1,4].
Although, MRI is a widely used medical diagnostic technique,
it requires long acquisition times to produce a high resolution
image. The other limitations of MRI include imaging static
structures over a short period, and the patient’s discomfort in
holding breath during the MRI procedure [4]. By using CS
technique, MRI scanners can avoid these limitations and
produce images. Compressive sensing paves the way for a

number of possible applications by efficiently capturing sparse
and compressible signals, using a relatively small number of
measurements [4]. CS techniques are capable of delivering
accurate results with low radiation dose and increased imaging
speed [5].

Choice of the signal’s sparse domain and measurement matrix
is essential for CS. The reconstruction algorithm is the most
important element of CS. Quality of signal reconstruction
influences feasibility of the CS theory. In this paper, we
propose an adaptive matching pursuit algorithm for biological
signal reconstruction in blind sparsity. First, the traditional
quadratic loss function is replaced with more robust Huber loss
function for the non-Gaussian noise and the objective function
based on Huber loss is constructed to improve resistance to
unknown noise. Then, the sparsity-adaptive matching pursuit
algorithm is used to reconstruct the sparsity-blind biological
signal corrupted with non-Gaussian noise.

Methodology
Given a vector signal y with a length of n, it is sparse for a
known orthogonal sparse basis � ∈ ℝ� × �, and it can be
written as� = ���,    sup�(�) ≪ � (1)
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where supp(x) is the support set of x. While projecting y via
the measurement matrix H, the measurements usually contain
noise from the environment as� = ��+ � = �′�+ � (2)
where v is the noise sequence, � = �′�� ∈ ℝ� × �, (� < �) .
Many CS algorithms have been proposed to reconstruct the
signal from noise-corrupted measurements as shown in
Equation (2), most of currently available algorithms assume
the noise is Gaussian. However, in the real-world environment,
the measurement noise v is usually non-Gaussian [6]. To
address the problem associated with non-Gaussian noise and
the resultant pollution, it is very urgent to find a signal detector
that can resist non-Gaussian noise. This unknown noise
depends on the environment, and it may be non-Gaussian or
has uncertainty, such as only part of the distribution of the
noise is known. A typical model for uncertain distribution of
the noise is the ε contaminated distribution [7]�� = (1− �)�+ �� (3)
where Γ is a known Gaussian distribution, � is an unknown
contaminated distribution, and 0 ≤ ε ≤ 1 is a known parameter
which determines the ratio between Gaussian and non-
Gaussian distributions.

In order to resist the ε contaminated Gaussian noise, the
traditional quadratic loss function is replaced with more robust
Huber loss function [7]

��(�) = �2/2               � ≤ ����( � − ��/2)     � >�� (4)
To obtain the sparse solution, the normalized l1 norm is used
here� = argmin[��(� − �′�) + � � �1] (5)
where γ is the smoothing coefficient used to balance the Huber
loss function and the l1 norm (sparsity). Equation (5) is an
unconstrained convex optimization problem. It is also a non-
linear optimization problem which is not integrable at z=0,
thus it does not have a global-minimal closed-form solution.
But Equation (5) can be converted into a constrained
optimization problem� = argmin��(� − �′�) � . � .    � �1 ≤ � (6)
where τ is the sparsity bound of x under the l1 norm. Equation
(6) indicates that lH(z-Hʹx̂) converges to a minimal value as
iterations increase. Consider an extreme case where z → Hʹx̂
when the minimal value converges to 0, i.e. lH(z-Hʹx̂) → 0. In
this case, the noise v is introduced to Hʹx̂, thereby, reducing the
accuracy of an estimated signal � and reconstructed sparse
signal.

Results
Assume that the measured values are collected in the non-
Gaussian noisy environment, the noise is the Gaussian-Laplace
mixture, ε=0.9 and the Laplace noise parameter λ=0.2. The
variance of measurement noise Rv=0.0012I128×128, the sparse
incremental step size is s=2. Reconstruction is considered
successful if ||x̂-x||2<10-5. Each reconstruction algorithm takes
1000 times to compute the reconstruction success probability.
The variance of the driving noise is Q=10I. This process can
be described as��(�+ 1) = ��(�) + ��(�),  ��(�) ∈ sup�(��(�)) 0,           ��ℎ�� (7)
The proposed PFMP is compared with other typical methods,
including MP, ROMP, SAMP, and MCMP in [6], KFCS in [8],
KFMP in [9] and the BP de-noising method (BPDN) in [10].
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Figure 1. The performance of reconstruction under the sparsity K=50
with the changing of SNR.
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Figure 2. The performance of reconstruction under the sparsity K=10
and SNR=25dB with the changing of number of measurements

Figures 1 shows the reconstruction performance of each
algorithm as a function of SNR of input measurements in the
dynamic non-Gaussian noisy environment. It can be seen that
even if the reconstruction performance of each algorithm is not
as good as in the static environment, PFMP is still superior to
others for the case of non-Gaussian noisy environment. KFCS
and KFMP are still influenced by non-Gaussian noise and the
performance is very poor. The performance of MCMP
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decreases dramatically in the dynamic environment, and is
inferior to PFMP by a large margin.

In order to evaluate further the algorithm’s reconstruction
performance, Figure 2 shows the performance of all algorithms
as a function of the number of measurements given sparsity
and SNR. From numerical results in Figure 2, it can be
observed that the reconstruction performance of each algorithm
improves with the number of measurements. When the number
of measurements M<90, PFMP and MCMP almost have the
same performance and are both superior to others. However, as
M<85, PFMP outperforms MCMP.

Conclusion
In order to improve immunity of the current reconstruction
algorithm of CS with the non-Gaussian noise in the
measurement, this paper proposed a particle filtering-based
algorithm to reconstruct signal with blind sparsity. First, the
traditional quadratic loss function is replaced with the more
robust Huber loss function for the purpose of combating the
influence of non-Gaussian noise, thereby achieving accurate
reconstruction of signal with blind sparsity. Simulation results
indicated that the proposed algorithm greatly improves the
anti-noise performance, especially in resisting non-Gaussian
noise compared with existing greedy algorithms.
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