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Introduction

Let us first consider the direct scattering problem: 
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where α, β ϵ S2 are the directions of the incident wave and 
scattered wave correspondingly, S2 is the unit sphere k2 > 0 is 
energy, k > 0 is a constant, A(β, α, k) is the scattering amplitude 
(scattering data), which can be measured, and q(x) ϵ Q, where Q 
is a set of C1-smooth real-valued compactly supported functions, 
q = 0 for maxj |x| ≥ R, R > 0 is a constant. By D the support of 
q is denoted.

The direct scattering problem (1) - (3) has a unique solution [1].

Consider now the inverse scattering problem

Find the potential q(x) ϵ Q from the scattering data A(β, α, k). 
The uniqueness of the inverse scattering problem with fixed-
energy data (k = k0 > 0 is fixed) is proved by Ramm [1]: q(x) ϵ 
Q is uniquely determined by the scattering data A(β, α, k0) for a 
fixed k = k0 > 0  and all α, β ϵ S2. Ramm also gave a method for 
solving the inverse scattering problem with fixed-energy data 
and obtained an error estimate for the solution for exact data and 
also for noisy data [1], Chapter 5.

In this paper, we give a numerical implementation of the method 
proposed by A. G. Ramm, for solving the inverse scattering 
problem with non-over-determined data, that is, finding q(x) ϵ 
Q from the scattering data A(β, k) := A(β, α0, k) for a fixed α0 ϵ 
S2, all β ϵ S2, and all k ϵ (a, b), 0 ≤ a < b. The basic uniqueness 
theorem for this problem is proved, see also [2-7]. In Section 
2, the idea of this numerical method is described. This idea and 
the method described in Section 2 belong to A. G. Ramm. In 
Section 3, the DSM algorithm used to solve ill-posed linear 
system is described. In Section 4, the numerical procedure is 
presented and in Section 5, some examples of the numerical 
inversion are given.

The essential novel features of this inversion method are: 

•	 The data are non-over-determined. So these are minimal 
scattering data that allow one to uniquely recover the 
potential. 

•	 The inverse scattering problem is highly non-linear. 
Nevertheless, our method reduces the inversion to stable 
solution of linear algebraic system (8). 

•	 The numerical difficulty comes from the fact that system 
(8) is highly ill-conditioned.

Inversion method

Let q ϵ Q. The unique solution to (1) - (3) solves the integral 
equation:  
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k > 0 is a constant, α0 ϵ S2 is fixed. This equation is uniquely 
solvable for u under our assumptions on q. Let h(x, k) = q(x)u(x, 
k). Then (4) implies 
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Equations (3) and (4) yield the exact formula for the scattering 
amplitude:  
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 From equation (5) one derives the formula for q(x) if h(k, x) is 
found: 
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The idea of our inversion method 

By the uniqueness theorem from [6], equation (6) has a unique 
solution h(x, k). Solve numerically equation (6) for h(x, k). To 
do this, discretize (6) and get a linear algebraic system for hpm:= 
h(yp, km). If hpm are found, then q(xp) are found by formula (7), 
see also formula (9) below.

Let us partition D into P small cubes with volume Δp, 1 ≤ p ≤ P. 
Let yp be any point inside the small cube Δp. Choose P  different 
numbers km ϵ (a, b), 1 ≤ m ≤ P, and P different vectors βj ϵ S2, 1 
≤ j ≤ P. Then discretize (6) and get a linear algebraic system for 
finding hpm: 
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Where hpm:= h(yp, km). Solve the linear algebraic system (8) 
numerically, then use equation (7) to find the values of the 
unknown potential q(xp):
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Remark 1: Note that the right hand side of (9) should not 
depend on m or j. This independence is an important requirement 
in the numerical solution of our inverse scattering problem, 
a compatibility condition for the data. This requirement is 
automatically satisfied for the limiting integral equation (6), see 
formula (7).

The values of q(yp) essentially determine the unknown potential 
q(x) if P is large and q is continuous. The potential q is unique 
by the uniqueness theorem in [6].

Note that one can choose βj and km so that the determinant of 
the system (8) is not equal to zero [7], so that the system (8) is 
uniquely solvable, but the numerical difficulty is unavoidable: 
the system (8) is very ill-conditioned because it comes from an 
integral equation (6) of the first kind with an analytic kernel. 
We use the dynamical system method (DSM) from [2] to solve 
stably the ill-conditioned system (8).

Dynamical System Method (DSM)
Equation (8) with noisy data is a linear algebraic system of the 
form

=Mu fδ δ 			                                         (10)

where M is the matrix of the size P × P and fδ is the noisy data, 
that is, the noisy values of -4πA(βj, km) in equation (8), || fδ  - f || 
= δ for a fixed m and 1 ≤ j ≤ P. To solve this ill-posed system we 
use the Dynamical Systems Method (DSM) from [2]:  
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where T := M *M, M* is the adjoint matrix and a(t) > 0 is a non-
increasing function such that a(t) → 0 as t → ∞. Equation (11) 
has a unique solution  

1 *
0 0

( ) = ( ( )) .
tt t su t u e e e T a s M f dsδ δ

− − −+ +∫ 		              (12)

To use the DSM method, we need to choose a(t) and find a 
stopping time tδ so that uδ(tδ) approximates the solution of Au = 
f, so that limδ → 0 ||uδ - u|| = 0, where the norm is in P .

Choice of a(t) and tδ:

In [2], necessary conditions for a(t) are: a(t) is a nonincreasing 
function and lim ( ) 0t a t→∞ = . In our experiments, we choose 
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. Consider a step function ( )ã t  approximating ( ) :a t
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 where an = a(tn) and we choose tn such that  tn+1 - tn = hn, hn = qn, 
q = 2. From equation (12), one computes un = u(tn) by:  
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 and one gets an iterative method to solve (12):  
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To choose tδ, we use a relaxed discrepancy principle [2]:  
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where the norm is the vector norm: 2 2
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. One stops the iterative method (15) when condition (16) is 
satisfied.

Numerical Procedure and Results
In practice, one can measure the noisy scattering data 
experimentally. For our numerical experiments, we need to 
construct the noisy scattering data A(βj, km). 

Constructing noisy scattering data
Given a potential q(x), let us first construct the exact scattering 
data Ã(βj, km). We partition D into P small cubes and discretize 
equation (4) to get  
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One solves this linear system for u(xp, km) assuming that q(x) 
is known. Then the exact scattering data are calculated by the 
following formula:  
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Then one can randomly perturb each Ã(βj, km), 1≤ j ≤ P by =δ  
const > 0 to get the noisy scattering data A(βj, km) = Ã(βj, km) 
± δ  where the plus or minus sign is randomly choosen. Then 

2
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the noise level of the data in equation (10).

Numerical procedure

The following steps are implemented in each experiment:  

•	 Choose D, α0, P, q(x), km, and δ . 

•	 Use (18) to find the exact scattering data Ã(βj, km), 1≤ j ≤ 
P. Try different values of km so that the determinant of the 
system in (8) is not zero. Let k be the found value of km. 

•	 Use the procedure in Section 4.1 to get the noisy scattering 
data A(βj, k), 1≤ j ≤ P. 

•	 Solve the linear algebraic system (8) to get hpm = h(yp, km). 
Here we use the DSM method in Section 3 with the noise: 
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Constant Potential ( ) = 10q x
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 Relative Error

.04  0.4348  0.0566

.02  0.2174  0.0037

.01  0.1087  0.00065

Table 1. Numerical results for constant potential q(x) = 10
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Potential 
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 Relative Error

.04  0.0806  0.1284

.02  0.0403  0.0547

.01  0.0201  0.0367

Table  2. Numerical results for the potential 
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•	 Calculate the potential ( )pq x  by formula (9): 
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See Remark 1 below formula (9). 

•	 Find the relative error of the estimate of the potential:  
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Numerical Results
In these experiments, we choose D to be the unit cube centered 
at the origin, with sides parallel to coordinate planes, P = 1000, 
α0 = (1, 0, 0), and 50 ≤ km ≤ 100 is chosen so that the determinant 
of the system in (8) is not zero. The condition number of A is  
̴1013.

In the following graphs, the x-axis is the index of the collocation 
points (this index varies from 1 to 1000) and the y-axis is the 
value of the potential. 

Constant potential with compact support
The inverse scattering problem with constant in D potential is 
used to test our inversion method. In this experiment, we take 
q(x) = 10. The results are obtained as in Table 1 and Figure 1. 

Potential 
exp( | |)( ) =

| |
xq x

x
−

In this experiment, we take exp( | |)( ) =
| |

xq x
x
− . The results are 

obtained as in Table 2 and Figure 2. 

Conclusion
In this paper, a numerical method is given for solving the 
inverse scattering problem with non-over-determined scattering 
data and the numerical results are presented.
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Figure 1. Constructed potential vs original constant potential 
( ) = 10q x  when = 0.01δ .

 

Figure 2. Constructed potential vs original potential exp( | |)( ) =
| |
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when = 0.01δ .
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