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Introduction
Liver cancer is one of the leading causes of death in both 
developed and developing countries. It is ranked as the fifth 
in terms of the most common prevalence and as the third in 
terms of causes of cancer-related death [1]. It is treated by 
surgical resection and RFA [2]. However, for large tumors, 
it is not preferred but surgical resection is the preferred 
method [3]. Surgical resection isn’t suitable for all patients 
due to multifocal disease, tumor size, and location of the 
tumor in relation to key vessels [4]. But on the other hand, 
for small tumors (i.e.,<3 cm in diameter), it is common to 
use RFA and other ablation methods such as microwave [5]. 
The RFA technique is the application of Radio Frequency 
(RF) electrical signals to soft tissue [6]. RF electrodes are 
injected into the organ to generate enough RF joule heating 
to raise the temperature above 50°C [7]. Tissues exposed 
to those temperatures for 1 minute or higher are destroyed 
by the heat [8]. This technique utilizes RF current (450-
500 kHz) to generate a thermal field required to remove a 
liver tumor [9]. This current passes through the organ from 
the active electrode to the passive electrode [10]. There are 
two different types of RFA techniques depending on the 
placement of the passive electrode: Bipolar or monopolar 

[11]. In the bipolar technique, electrical current passes 
between the two electrodes applied to the target tissue 
[12]. Bipolar applications are efficacious treatments for 
dermal defects, obesity, and sagging skin [13]. In the 
monopolar technique, the electrical current is connected to 
the organ through a small active electrode inserted into the 
tumor and a large electrode already present on the back 
of the patient [14,15]. An RF voltage is generated by an 
RF generator between a reference electrode and the active 
electrode. The electric field oscillates the alternating radio 
current, causing oscillatory motion of ions in the tissue 
commensurate with the field intensity [16,17]. Heating 
of tissue happens as a result of ionic excitation associated 
with the passage of RF current through the tissue [18]. The 
heat generation of tissue leads to cell dying by thermal 
coagulative necrosis. Therefore, RF volume thermal 
ablation is subject to the distribution of temperature in 
the tissue [19,20]. For large tumors in general, the bipolar 
technique is used to achieve a larger ablation volume 
[21]. As a result, we chose the bipolar technique because 
our paper focuses on large tumors. Currently, most of 
the commonly used RF electrodes are made of nickel-
titanium alloy [22]. Nickel-titanium alloy is a very good 
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material for medical devices because it is biocompatible 
with the human body [23]. However, the main limitation 
with nickel-titanium alloy is its low thermal and electrical 
conductivities [24]. Electrodes made of materials with 
high thermal and electrical conductivity such as gamma 
titanium can contribute to increased ablation volume and 
reduced ablation time [25].

RFA can be used for a greater number of patients and it 
has a greater potential for repeated treatment of tumors 
compared to traditional surgical resection [26,27]. The 
Finite Element Model (FEM) is a numerical method used 
to approximate the solution of boundary and initial value 
problems characterized by partial differential equations 
[28]. Lee et al., simulated medical problems about 
the biomechanical effects of dental implant diameter, 
connection type, and bone density on micro gap formation 
[29]. Vogel et al., [30] the authors have designed FEM to 
study the effects of stress and strain distribution in femoral 
heads for hip resurfacing arthroplasty with different 
materials. While, on the other hand, the authors simulated 
FEM to ablate bone tumor by using RFA and succeeded in 
abating 85% of tumor [31]. Radmilović-Radjenović M et 
al., [32], the authors designed FEM to ablate liver tumor 
by using a cool-tip RF electrode.

Several theoretical studies have studied the effect of the 
thermal and electrical conductivities of the RF electrode 
on volume ablation, including both ex-vivo [33,34] and 
clinical studies [35,36]. Baldelli A et al., [37] the authors 
compared materials that have high electrical conductivity 
with those that have low electrical conductivity. Xu L et 
al., [38] simulated RFA model using FEM two cool-tip 
RF electrodes made of nickel-titanium alloy. Their results 
showed their success in removing 4 cm3 of spherical 
tumor in 10 minutes, and that the best distance between 
two electrodes when ablation a large tumor is 1 cm. In this 
paper, we will use that model as a reference model.

The purpose of this paper is to use a computer model to 
investigate the effect of thermal and electrical conductivity 
for gamma titanium on ablation volume. In this paper, we 
designed a model based on the cool-tip RF electrode. The 
simulation model uses COMSOL multiphysics software 
to prove the possibility of reaching this goal [39]. The 
model is based on a numerical finite element analysis to 
compute the distribution of heat and electric potential 
inside the damage and surrounding tissue during an RF 
ablation. We compared both models (our developed model 
and the reference model) in the ablation volume values at 
the same time and with the same power and succeeded in 
abating large tumors while trying to reduce the damage 
to healthy cells in less time after using gamma titanium. 
The research is organized as follows: First, an explanation 
of the model's methodology, including its equations and 
parameters; second, the model's results and discussions, 
highlighting the differences in results between our model 
and others; and finally, the conclusions.

Materials and Methods
FEM modeling

Each FEM model is included within a cylinder domain that 
contains both the liver domain and the electrode domain. 
The radius of the base of the cylinder is 5 cm, the height 
is 12 cm, and the distance between the two electrodes 
is 1 cm [38]. Each one has the electrode geometry, RF 
electrode material, and liver tissue to implement. This 
model has four domains: The liver, electrode, trocar, and 
tumor domains. Finally, the effect of the following tuning 
parameters: Distance between two electrodes, ablation 
power, ablation time, and electrode design on the ablation 
volume is studied.

Liver domain

The liver domain includes everything surrounding the 
electrode, including blood, blood vessels, and liver tissues. 
In our study, we assumed that the tumor was spherical as 
56% of liver cancer patients had spherical tumors [40]. 
We assumed that the tumor size was 16 cm3, which is the 
largest volume that has been recorded for a liver tumor in 
Egypt in the last ten years [41].

Electrode domains

The electrode domain consists of an electrode domain and 
a trocar domain as shown in Figure 1 [38].

The RF electrode consists of:

• An insulated stainless-steel trocar with a diameter of 
0.73 mm and a height of 12 cm

• A nickel-titanium alloy (nitinol) electrode with a 
height of 3 cm and a diameter of 0.73 mm with a tip 
in a cone

Mathematical equations

Tissue temperature change due to RF can be mathematically 
explained by the following Pennes equation [42].

.( ) ( ) .........(1)b b b b m b
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Figure 1. A simplified model shows the design of the electrode.
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V=0 on the surface of the liver ………… (4)

V=V0 on the surface of the electrodes ………… (5)

n.j=0 on all other boundaries ……… (6)

V0 in our model varied from 22 to 30 volts applied to the 
RF electrode.

Tuning parameters of the model

Understanding the parameters that influence the volume of 
RF thermal ablation is critical for designing a probe and 
generator formations that best suit the patient anatomy and 
clinical goals.

The best way to solve this issue may rely on the application 
of two RF electrodes. In order to achieve this goal, we 
have selected three main parameters as follows.

Ablation power

Ablation power is related to the amount of energy required 
to ablate the tumor as follows [49].

2
RP IV V Z= = ……….. (7)

Where ZR is the tissue impedance between RF electrodes

Usually, the value is 5 joules with direct current charged 
on the RF electrode [50]. We can increase or decrease the 
power by changing the value of joules.

Ablation time

Time ablation is the time required to perform the ablation 
process of the tumor [51]. The ablation time ranges from 
one to ten minutes.

Electrode design

The electrode design and its material have an important 
role in increasing the volume of tumor ablation. In this 
study, we developed the electrode design by using titanium 
aluminide alloy (gamma titanium) instead of the nickel-
titanium alloy. This titanium alloy is biocompatible and 
has superior corrosion resistance, high specific strength, 
rigidity, lower density, and higher thermal and electrical 
conductivities than nitinol, as shown in Table 2 [52]. Then, 
we modified the diameter of the active part from 0.73 mm 
to 1 mm and the height of the cone from 1 mm to 6 mm to 
be suitable for large tumors.

where ρ  is the is the tissue density (kg/m3), c is tissue 
specific heat capacity (J/kg/K), κ is tissue thermal 
conductivity (W/m/K), wb is blood perfusion rate (1/s), 
and Qm is the volumetric heat produced by metabolism 
(W/m3).

JE is joule heating, which represents heat generated by 
RF, where J is current density, E is electric field intensity, 
σ is conductivity with a unit of Sm-1 and V is voltage 
impressed on the electrode.

Qb is volumetric heat produced by radiofrequency heating 
(Wm-3) calculated using equation (2), Tb is core blood 
temperature (supposed to be 37°C), because the blood 
vessels effect was discarded in this study then we can 
assume Tb and T are equal then Qb was set to zero Wm-3.

The RF operating frequency is approximately 450-500 
kHz, that is usually used for bipolar technique [43]. 
Depending on this, the main mode of the RF electrode 
during power delivery is conduction with low capacitance 
coupling. In this case, the model can be considered as a 
semi-electrostatic field [44].

Heat of resistance can be generated as a result of the action 
of an electrical field resulting in the thermal field of the 
coupling [45]. These two fields have a concerted influence 
on the division of the heat field and the electric potential 
field via the liver model [46]. Equations (1-3) offer 
solutions to problems associated with electro-thermal in 
RFA.

Materials and boundary conditions

Depending on the literature, the physical characteristics of 
the reference model are shown in Table 1 [47,48].

The first value voltage and the first value temperature 
of the whole FEM model were taken as 0 V and 37°C, 
respectively. The liver and tumor have blood perfusion 
values because they have contact with blood, while the 
electrode and trocar do not have blood perfusion values 
because they do not have contact with blood. The surface 
of the liver was considered insulated and grounded, and 
the surface of the electrode was voltage loaded V0

Tissue Electrical  
conductivity (S/m)

Specific heat  
(J/kg.K)

Thermal conductivity  
(W/m.K)

Density  
(kg/m3)

Blood perfusion  
( s-1)

Liver 0.333 3600 0.512 1060 0.0017
Tumor 0.1168 4200 0.552 999 0.0156

Table 1. Electrical and thermal properties of the materials.

Material Nitinol Gamma titanium
Electrical conductivity (S/m) 9.8 × 105 9.56 × 106

Specific heat (J/kg.K) 500 620
Thermal conductivity (W/m.K) 36.7 124

Density (kg/m3) 8100 4700

Table 2. Properties of the nitinol and gamma titanium materials [53, 54].
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Ablated tissue

Healthy cells are differentiated from ablated cells by 
calculating the damaged tissue index, α. This index 
depends on several factors, such as

• The hyperthermia damage temperature (Td,ℎ).

• The cryogenic damage temperature (Td,).

• Instantly after the temperature exceeds the 
hyperthermia necrosis temperature (Tn,h).

• Instantly after the temperature falls below the 
cryogenic necrosis temperature (Tn,).

Then the damaged tissue indicator, α, defined either by

,
0

1 t

d h
dh

dt
t

α ϕ= ∫
 

………. (8) or
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0

1 t
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where ,d hϕ  is the period of time when T>Td,ℎ to thetime 
limit tdℎ and  the ratio of the period of time when T>Td,h to 
the time limit tdh.
The value of the damage indices (α) is set to one for 
healthy cells and zero for damaged cells. When the 
ablation process starts, damaged cells are removed, and 
the value is converted from zero to one according to the 
following equations.
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After the time of ablation reaches 10 minutes, we 
computed the ablation volume at various times to evaluate 
the integrations of areas of damage.

Results and Discussion
At the beginning, for both two models, we increased the 
power value from five joules to 10, 12.5, and 15 joules 
to increase the ablation volume and decrease the ablation 
time.

The electric potential field distribution was shown after 
10 minutes, as shown in Figures 2 and 3. We increased the 
voltage of the electrical potential value from 3.5 V to 25 
V after the development of an RF electrode design, which 
helps to increase the ablation volume. Then we began to 
calculate the ablation volume by changing the values for 
the ablation time and the ablation power. By calculating 
the ablation volume after the development that we made 
and comparing it before the development, we found that 
the ablation volume increased as shown in Tables 3-5 
respectively.

The simulation results and the percentage of ablation 
achieved before and after development at 10, 12.5 and 15 
joules are shown in Figures 4-6 respectively.

It was shown from the results of the new design electrode 
after development

Figure 2. Electric potential distribution when using nitinol (a) at 10 joules, (b) at 12.5 joules and, (c) at 15 joules.

(a) (b)

(c)
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Figure 3. Electric potential distribution when using gamma titanium, (a) at 10 joules, (b) at 12.5 joules and, (c) at 15 joules.

Time (min) Power (Joules) Volume (cm3) with a 
nickel-titanium alloy

Volume (cm3) with a 
gamma titanium Rate of increase (cm3)

1 10 0.5 1.4 1

2.5 10 1.5 2.4 1

5 10 2.4 3.4 1

7.5 10 2.9 4.1 1.2

10 10 3.4 5 1.6

Table 3. Ablation volume at 10 joules and the rate of increase in the ablation volume.

Time (min) Power (Joules) Volume (cm3) with a 
nickel-titanium alloy

Volume (cm3) with a 
gamma titanium Rate of increase (cm3)

1 12.5 0.5 2.7 2.1

2.5 12.5 1.3 4 2.5

5 12.5 2.5 5.3 2.9

7.5 12.5 3.1 6.5 3.5

10 12.5 3.5 7.9 4.3

Table 4. Ablation volume at 12.5 joules and the rate of increase in the ablation volume.

Time (min) Power (Joules) Volume (cm3) with a
nickel-titanium alloy

Volume (cm3) with a
gamma titanium Rate of increase (cm3)

1 15 0.5 4.9 4.3

2.5 15 1.4 6.2 4.7

5 15 2.6 7.5 5

7.5 15 3.3 8.8 5.7

10 15 3.6 10 6.3

Table 5. Ablation volume at 15 joules and the rate of increase in the ablation volume.

(a)

(c)

(b)
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Figure 4. Comparison of ablation percentage before and after adjustments at 10 joules.
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Figure 5. Comparison of ablation percentage before and after development at 12.5 joules.

 

80.00% 

70.00% 

60.00% 

50.00% 

40.00% 

30.00% 

20.00% 

10.00% 

0.00% 
at t=1 min at t=2.5 min at t=5 min at t=7.5 min at t=10 min 

  

Figure 6. Comparison of ablation percentage before and after development at 15 joules.

• At 10 joules: The maximum ablation volume increased 
from 3.4 cm3 to 5 cm3 and the ablation rate increased 
from 21.3% to 31.3% after ten minutes of ablation.

• At 12.5 joules: The maximum ablation volume 
increased from 3.5 cm3 to 7.9 cm3 and the ablation 
rate increased from 22% to 49.4% after ten minutes 
of ablation. 

• At 15 joules: The maximum ablation volume increased 
from 3.6 cm3 to 10 cm3, and the ablation rate increased 

from 22.5% to 62.5% after ten minutes of ablation.

Conclusion
The results show that using gamma titanium instead of 
nickel-titanium achieved an increase in the ablation volume 
because it has higher electrical and thermal conductivity 
than nickel-titanium alloy. Also, the results show the effect 
of tuning parameters (ablation power, ablation time and 
design of the electrode) on increasing the ablation volume 
and decreasing the ablation time. The results show that the 
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electrode design is the most important tuning parameter 
because with the change of design from the reference 
model to our developed model, the effect and success of 
the rest of the tunning parameters appeared. That helps to 
reduce the patient's pain and increase the accuracy. Future 
work can study the effect of a RF multi-hooks electrodes 
on large tumors by using the same tuning parameters and 
compare it with a RF cool-tip electrode.
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