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Abstract

One of the most challenging tasks with Electroencephalography (EEG) signals is the automated epileptic
seizure detection. Traditional automated epileptic seizure detection approaches focus on time or
frequency domain to analyse EEG signals. A novel technique for epileptic seizure detection is proposed
in this paper, which is based on complex networks synchronous state. The concept of complex network
synchronization states has been introduced firstly, and then a network varying with time has been
defined by taking the measurement EEG signals as nodes. The dynamic mechanics of the EEG signals
network has been quantitatively described by mathematical analysis method. Finally, the mathematical
definition, the calculation method and the physical meaning of the EEG signal network synchronous
state has been given in this paper. The above theoretical derivation had shown that synchronous state
can be employed to assess the level of healthy state with EEG signals. The couple matrix A=(aij)N × N of
complex network has been defined by the distance relevance of the measured data, and the left
eigenvector (ξ1, ξ2 ,..., ξN), corresponding to the zero feature of the matrix, has been employed to
character the local details of complex network nodes. Then, a node fault diagnosis algorithm has been
derived based on network synchronous state. The public available EEG database of University of Bonn
(UoB), Germany has been used to verify the effectiveness and validity of our proposed method, which
has become a benchmark for developing the epilepsy seizure detection systems. Furthermore, the
excellent performance of the proposed method has shown that this method can be employed to track the
patient healthy state and monitor the moment of epilepsy seizure. This paper has been reported with
some references to researchers in related fields.
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Introduction
The world health organization illustrated that more than about
1% of the world population suffers from epilepsy, which has
been considered as the second largest disease with a little lower
than stroke [1]. Even more badly, the spontaneous and
unforeseeable occurrence has been its characteristics and
challenges. The main changes occur in neurons is the
phenomenon of hyper-active and hyper-synchronous neuronal
firing [2]. Unfortunately, the patient cannot carry out any self-
activities until the exhaustion of their energy during epilepsy
seizure, which affects the patients’ life seriously, and the
patients’ quality of life can be increasingly hindered by the
symptoms [3]. Comprehensive above all, the unsupervised
automated epileptic seizure detection method is so important to
realize the goal of making the epileptic seizure activity to be
considered as a controllable and curable disease.

In the literatures of recent decades, biomedical signal
processing area had been developed by extracting relevant
feature information directly from raw physiological data sets.

And furthermore, the EEG signals have been considered as a
non-invasive, low-cost and effective technique to detect the
changes of electrical activity [4,5]. However, the common EEG
signals, collected from the occurrence of epileptic seizures,
always contained non-periodic, non-linear and non-stationary
signal, which brings a great challenge to analyse the EEG
signals [6]. Over recent decades, automated epileptic seizure
detection methodology, aimed at assisting the experts in the
time-consuming and tedious process, have been made to
develop by many attempts.

The detection of seizures based on EEG signals can be treated
as a binary problem, where the goal is to discriminate the ictal
and seizure-free states. The most significant of the epileptic
seizure detection methodology concentrates in two aspects,
called the feature extraction and pattern recognition. In the
domain of feature extraction, different approaches have been
employed in these systems with varying degrees of success.
More recently, frequency domain analysis using fast Fourier
transform [7], Hilbert-Huang transform [6], and time-
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frequency domain methods like dual-tree complex wavelet
transforms [8], especially wavelets, such as multiwavelet-based
time-varying modeling scheme [9], and the normalized Haar
discrete wavelet packet transform [10], researches have often
been employed to extract the discriminating features from the
complex EEG signals. These features, including entropy
[11,12], spectral power [13], energy [14], and so on [15,16],
have shown its high level of performance for characterizing
slight changes in EEG signals.

Once the feature sets are extracted, pattern recognition
approaches are employed to identify the class according to the
input features. Various pattern recognition approaches have
been reported in recent literatures. These methods, such as
neural network [8], extreme learning machine [5], Support
Vector Machine (SVM) [2,12], have been made to employ a
certain number of features for training and the remaining for
testing. The accuracy of the recognition methods depends on
two points, i.e. efficient feature extraction and train-to-test
ratio [8].

To the best of our knowledge, although many epileptic seizure
detection methodologies have been developed, very few of the
investigations have so far tested the effect of combining the
other theory methods. And the purpose of this paper is to
construct a novel unsupervised automated epileptic seizure
detection technique for classification of ictal and seizure-free
EEG signals. Currently, complex networks have been
employed to analyse different time series, such as biomedical
and brain signals. Complex network has been considered as a
mathematical model with relational information, which can be
represented by a graph. And the graph theory provides a
method to capture the topology of a network and to extract the
main characteristics across networks which can help better
understand the relationships between networks [17].

The remainder of this paper is organized as follows. In section
2, the challenges and main problems in epileptic seizure
detection, and a case study on the public available EEG
database of University of Bonn (UoB), Germany [18,19] to
verify the effectiveness and validity of our method, which has
become a benchmark for developing the epilepsy seizure
detection systems, have been represented and how we
considerate it with our method. Section 3 describes the novel
unsupervised automatic epileptic seizure detection
methodology based on complex networks synchronous state.
The experimental results and some discussions have shown the
effectiveness of our method for epileptic seizure detection in
section 4. Finally, some conclusions and our directions of
future research work have been pushed out, and furthermore,

the excellence and limitations have also been described in this
section.

Challenge and Problem Statement
Currently, epilepsy seizure detection has only visual inspected
with EEG recordings by experienced neuro-physiologists or
trained neuro-clinicians [20]. This visual inspection on EEG
recordings hinders the diagnosis procedure, and furthermore,
the EEG recordings acquisition process always lasts several
hours or more. Several hours are sufficient to make the patient
tired. And unfortunately, the accuracy of the doctors’ diagnosis
result is very poor and entirely influenced by the virtue of
experience, which is to be born with great arbitrariness. In
addition, the EEG signals are more likely to be subjected by
the interference from background noise, artifacts and
interfering expressions from other neurological
symptomatology. For above reasons, some methods for
automated detection of epileptic seizures could serve as a
fundamental clinical tool for the scrutiny of EEG signals in a
more robust, accurate and computationally efficient manner
[8]. And furthermore, assessing the healthy state of epilepsy
patients from the global perspective and the local perspective
can be considered as an expected method.

This study has employed the public available EEG database of
University of Bonn (UoB), Germany [20] to verify the
effectiveness and validity of our method, which has become a
benchmark for developing the epilepsy seizure detection
systems. This sample contained five subsets, i.e. A-E
respectively, as shown in Table 1. Five healthy volunteers had
been invited to make their EEG signals recorded and these
signals had been formed as seizure-free signals in A and B sets,
which were acquired by using gold plated surface electrodes
placed with the principle according to 10-20 international
electrode placement system. The five healthy volunteers were
relaxed and awake with eyes open (subset-A) and eye closed
(subset-B), accordingly. The datasets C and D were recorded
during seizure-free inter-ictal trials from electrodes, which had
been placed opposite to the epileptogenic zone and within the
epileptogenic zone, respectively. The dataset E describes
epileptic seizure signals, which had been collected by putting
the electrodes in the epileptogenic zone. In general, datasets A
and B consist of EEG signals recorded from healthy
volunteers, and C-E datasets were acquired from epilepsy
patients for pre-surgical diagnosis target intracranial electrodes.
Therefore, the database from UoB, consists of EEG signals,
can be divided into two segments, i.e., normal and inter-ictal
segments, as shown in Table 1.

Table 1. The definitions and descriptions for the EEG signals from University of Bonn (UoB), Germany.

Individual information Five healthy individuals Five epilepsy patients

Dataset A Dataset B Dataset C Dataset D Dataset E

State Awake with eyes open
(normal)

Awake with eyes closed
(normal)

Seizure free (inter-ictal) Seizure free (inter-ictal) Seizure activity (ictal)
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Electrode type Surface Surface Intracranial Intracranial Intracranial

Electrode placement International 10-20
system

International 10-20
system

Opposite to epileptogenic
zone

Within epileptogenic zone Within epileptogenic
zone

No. of epochs 100 100 100 100 100

Epochs duration 23.6 s 23.6 s 23.6 s 23.6 s 23.6 s

Table 1 has pointed that each subset contained 100 EEG
segments, each lasting for 23.6 s duration with 4097 samples
and sampling rate (Fs) of 173.610 Hz. In previous literature,
very few of investigations have considered seven different
combinations of the datasets A-E, except the reference [8].
This paper has made the emphasis to stand at unsupervised
automatic epilepsy detection methods.

The synchronous state of complex network is mainly due to its
highly dissipative coupling characteristics, resulting in the
failure of a small number of nodes or edges of the network.
And this will trigger redistribution of information flow or
energy flow in the network, and therefore these cause the
network topology to be changed, which makes the network
systems to be unbalanced and triggers the synchronous
behavior of the network. Furthermore, these characteristics will
lead to some roughly large-scale nodes overload or cascade
failures.

Synchronous state has been considered as an objective
quantitative evaluation method for synchronous behavior in
complex networks. The synchronization state is constrained by
the network topology and node dynamics, and it has also been
considered as the final state of network control. Simply say, it
can be seen as a description of a phenomenon that other nodes
have been stimulated according to the agreed strategy due to
some failures at a node in the network, and some positive
feedback has been developed in other nodes accordingly, such
as re-allocation of energy, information and so on. And then the
whole network would be resulted in an extreme synchronous
behavior with some extreme events, like cascading failure, etc.
[21]. It has great significance to optimize the network topology
and explore the practical application of the network with some
researches on the synchronization state of complex networks.

The ideal of the proposed method in this paper can be
descripted as that the topological structure in the network can
be employed to reflect the close relationships between the
same state nodes and the sparseness between different state
nodes, i.e., several sub-networks has been formatted and each
sub-network can be seen as a system operational state, and
therefore, the epileptic seizure detection problem can be
transformed into sub-network detection problem. Different
sub-networks will produce different complex network
synchronization states [22].

Theory and Methods
The consistency between each node in the complex network is
considered as the earliest objective quantitative description of
complex network synchronization. And latterly, the

synchronization state has been proposed to be calculated by
weighted average of the eigenvectors of the coupling matrix.
That is to say, the weighted average state and the difference
between the nodes will tend to be consistent in the network
synchronization. Therefore, the weighted average state can be
seen as synchronous state.

Basic theory
Considering the dissipative coupled nonlinear dynamic
networks, this can be employed to satisfy all the general
complex networks.

The function can be represented as following:�̇� � − � �� � + �∑� = 1� ���� �� � ,   � = 1,   2,   ..,   �(1)
Where xi=(xi1, xi2, ..., xin)T Rn is been seen as the solution of
the network Equation 1. f C (Rn, Rn), H (Rn, Rn) are the
continuously differentiable interconnection functions.
Coupling strength can be donated by σ>0. The coupling matrix
of the complex network can be calculated by A=(aij)N × N,
which can be as an asymmetric matrix (directed network) with
meeting the dissipation condition [23].

If the coupling matrix of the complex network A=(aij)N × N
satisfies the next two conditions: constructive conditions and
matrix rank conditions, then the left eigenvector ξ=(ξ1, ξ2 ,...,
ξN)T corresponding to the zero eigenvalue of the coupling
matrix A=(aij)N × N is nonnegative, i.e., ξ1 ≥ 0, 1 ≤ i ≤ N. These
conditions can be represented as following functions.

������������ ���������� ��� > 0,   � ≠ ���� = − ∑� = 1,   � ≠ �� � = 1,   2, …,   ����� conditions ����   � = � − 1
(2)

Under these circumstances, it can be further assumed that ΣN
i=1

ξ1=1, and the weighted average of left eigenvectors of coupling
matrix A=(aij)N × N can be calculated as following equation.� � = ∑� = 1� �jxj t (3)
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Where xi (t) is the solution of coupling system, donated by
Equation 1.

The necessary and sufficient condition of complex network is
that each node is been tended to be synchronous x̄ (t) when the
time t → ∞ and it is not relied on the initial conditions. That is
to say, synchronization is the convergence of all nodes at t →
∞ under any given initial conditions. The final synchronization
state may be different from different initial conditions, which
can be seen as a “curve cluster” without involving in the initial
conditions and it can be used as a macro description of the
synchronization behavior of complex networks. If the complex
network, donated by Equation 1, is under synchronous state, its
synchronous state is the set of final set of solutions of Equation
1, which satisfies the positive limit set of the solution of
equation.

Assuming that the synchronization manifold of the complex
network is donated by Rn × N, and its linear subspace can be
represented as M={x=(x1, ..., xN): xi=xj Rn, i, j=1,..., N}. When t
→ ∞, the solution of Equation 1 xi=(xi1,..., xin) has been
convergence to M, the complex network can be considered as
synchronization. For all nodes in complex network 1 will be
considered to be in synchronization state.

||xi (t)-xj (t)|| → 0, t → ∞, i, j=1, 2,..., N → (4)

Theorem 1. If the complex network is in synchronization state
under the condition of Equation 4, i.e. ||xi (t)-xj (t)|| → 0, t →
∞, i, j=1, 2,..., N, the necessary and sufficient condition can be
represented as following function.lim� ∞ �� � − � � = 0,   ∀�, � = 1,   2,   …,   � (5)
Theorem 2. Suppose that f (•) is the linear homogeneous, and
if the network is synchronous, the synchronization state x̄ (t) is
the solution of the isolated system, i.e.�•�(� � ) (6)
Theorem 3. Assume that f (•) satisfies the Lipschitz condition,
that is to say, there exists a constant value L>0, which can
make the equation ||f (x)-f (y)|| ≤ L ||x-y|| to be held with any
given x, y Rn. If the network is in synchronous state, then the
synchronization state x̄ (t) will meet the following function.lim� ∞�̇ − �( � � = 0 (7)
These three Theorems have given the relative knowledge of the
network synchronous state, for more details, you can refer to
[22-25]. Theorem 1 can be employed to prove that the
necessary and sufficient condition of complex network is the
equation lim� ∞ �� � − � � = 0, the expression x̄ (t) can be

employed to define the synchronous state, which is calculated
as the weighted average states of the nodes. Theorem 2 can be
used to prove that if f is the linear homogeneous, then x̄ (t) is
the solution of isolated nodes. Theorem 3 can be pushed out to
prove that if f is a nonlinear case, only it satisfies the Lipschitz
condition, then if the network is under synchronous state, x̄ (t)
can be considered as the approximate solution of the solitary

nodal equation. That is to say, the solution xi (t) satisfies the
solution condition of the coupling system, which can be
employed to calculate the x̄ (t) by weighted summation. And
furthermore, x̄ (t) can be seen as the synchronous state of
isolated nodes under the positive limit set.

EEG signal anomaly detection network
The relative knowledge on the synchronous state of complex
network can be employed to realize the epileptic seizure
detection, and the key point of this process relay on that the
network synchronization state does not depend on the initial
condition, i.e., the nodes of complex network will have the
corresponding network synchronization state solution under
any given moment and any given state. This means that when it
satisfied this key point and defined a complex network, the
coupling matrix defined by the association between nodes
needs to meet the constraint of Equation 2. The construction
process of the EEG signal anomaly detection network, the
mathematical definition, the calculation method and its
physical meaning of the network synchronization state has also
been pushed out in the following contents.

Assuming that under any time t, with the EEG signal from
several sensor nodes, such as the number of N sensors, it can
define a network coupling matrix that satisfies Equation 2. The
calculation method can be described as following function.��� = 11 + �� − �� 2 > 0, � ≠ �
��� = −∑� = 1, � ≠ 1� ���, � = 1,   2, …,� (8)

The rank of the coupling matrix in the complex network can be
proved as rank A=N-1, the synchronization manifold of the
nonlinear dissipative coupled nonlinear dynamical network 1
can be considered as the subspace M={x=(x1,..., xN): xi=xj Rn,
i, j=1, 2,..., N} in space Rn × N. When t, the solution x=(x1,
x2, ..., xN) of the equation converges to M, then the complex
network 1 become fully synchronized.

If the complex network 1 is in synchronization state under the
Equation 4 condition, i.e., ||xi (t)-x (t)|| → 0, t → ∞, i, j=1, 2,
…, N and its sufficient and necessary condition islim� ∞ �� � − � � = 0. Therefore, the weighted average

state x̄ (t) of the complex network nodes can be seen as the
synchronization state of the EEG signal detection network, that
is to say, when the network is under synchronization state, each
node converges to the weighted average state x̄ (t). The
mathematical description can be donated by following
function.∀� = 1, 2, …�, lim� ∞ �� � − � � = 0 (9)
It should be noted that the synchronization state of EEG signal
detection network can be employed to evaluate the healthy
state of the patient’s brain on a macro view. And while the left
eigenvectors ξ=(ξ1, ξ2 ,..., ξN), corresponding to the zero
eigenvalues of the coupling matrix A=(aij)N × N, can be used to
reflect the local details of EEG signal detection network.
Therefore, the healthy state of the patient’s brain can be
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synthetically evaluated by calculating the synchronization state
of the EEG signal detection network, and the left eigenvector
(ξ1, ξ2 ,..., ξN) can be employed to identify the anomaly of EEG
signal to realize the epileptic seizure detection. At this point,
the unsupervised automated epileptic seizure detection
methodology can be divided into five parts.

Step one, according to the measurement results, the dynamic
EEG signals anomaly detection network can be constructed in
real-time, and the coupling matrix A=(aij)N × N can also be
calculated.

• Step two, calculating the zero eigenvalue of the coupling
matrix A=(aij)N × N and then its corresponding left
eigenvectors ξ=(ξ1, ξ2 ,..., ξN) can be obtained followed by.

• Step three, the weighted average state x̄ (t) of each node is
calculated, i.e., the synchronization state of EEG signal
detection network.

• Step four, the state of epilepsy seizures can be judged
according to the change of the synchronization state
between this time and previous value.

• Step five, if the synchronization state of the EEG signal
detection network changes greatly and exceeds the tolerable
threshold, the anomaly EEG signal can be found out
through backtracking the left eigenvector ξ=(ξ1, ξ2 ,..., ξN).

In this epileptic seizure detection methodology, the actual
physical meaning of the coupling matrix A=(aij)N × N is that the
distance relative vector between different EEG signals can be
employed to reflect the spatial characteristics for the same or
similar objects in the anomaly EEG signal detection network.
And the left eigenvector corresponding to its zero eigenvalue is
a visual representation of the anomaly of the measurement
EEG signal of each node in EEG signal detection network. The
synchronization behavior of EEG signal detection network
describes the degree of network synchronization behavior on
the micro view, and the degree of consistency of the whole
network evaluates external objects.

Adaptive unsupervised threshold and epileptic seizure
detection methodology
Under these circumstances, a simple way to achieve epilepsy
seizure detection is only to set a constant threshold T.
Furthermore, the epilepsy can be considered to happen when
the amplitude of synchronization state signal of EEG signal
detection network is larger than the threshold T, as shown in
Figure 1. However, due to long time EEG signal acquisition
and measurement and the noise influence from background or
other factors, which make the threshold to have adequate
tolerance ability to avoid alarms. And furthermore, the EEG
recordings process always lasts several hours or more, which
makes the patient to be more tired, and the accuracy of the
expert’s diagnosis result becomes more and more poor with
time going by.

Figure 1. The schematic illustration of adaptive unsupervised
threshold methodology.

All the above reasons, some methods for automated detection
of epileptic seizures should serve as a fundamental clinical tool
for the scrutiny of EEG signals in a more robust, accurate and

computationally efficient manner [8]. And in addition, the
larger the threshold is, the less detection sensitivity is. A
balance should be achieved between the false alarm and the
detection sensitivity.

The ideal of this threshold methodology lies at the
effectiveness under the varied signal disturbance or
uncontrolled interference in time sequence. In order to achieve
the epilepsy seizure detection, the threshold should be derived
from a segment of the epilepsy EEG signal based on statistical
principle [26]. In general, the EEG signal can be considered as
approximately meet the normal distribution, the mean and
variance of the n samples in the segment of the EEG signals
can be computed by using following function.�� � = 1�∑� = � − �� �� ��� � = 1� − 1∑� = � − �� �� � − �� � 2 (10)
Where 0<n<k, ri (t) donates the synchronization state signal.

Generally, due to the non-periodic, non-linear and non-
stationary characteristics, different healthy state of patients’
will cause different changes in the EEG signals, which
corresponds different levels of changes on EEG signals. And
this can be described by the variance vt (k). However, if an
incipient change, presented as a slow changing synchronization
state signal happened in the EEG anomaly detection network, it
is hard to detect the anomaly EEG signal. In our consideration,
the decision of the anomaly EEG signals happening is not only
depended on the threshold, but also the time with the signal
beyond the threshold. Figure 1 presents the schematic
illustration of this adaptive unsupervised threshold
methodology. And the constant upper bound and lower bound
can be donated by Tcu, Tcl, toc represents the tolerate time.
When the synchronization state satisfies the rule, represented
as r>Tcu or r<Tcl for longer than toc, then the decision of
incipient epilepsy disease will be considered to happen.

When an epilepsy disease happen, the dynamic of the brain
system changes violently, then it can be represented in a form
of violent deviation of EEG signal. However, if the derivation
is result from noise or other disturbance, the duration time of
the derivation alarm should not be longer than toleration time
toc. Furthermore, the threshold would be increased violently
due to the abrupt non-stationary changes, which leads to a
blind-spot behind the first series of anomaly EEG signal
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alarms, and this phenomenon, will soon disappear with time
going.

Above all, the unsupervised automated epileptic seizure
detection methodology can be divided into three parts. Firstly,
the complex network is constructed by EEG signals. Secondly,
the synchronization state can be calculated by Equations 2, 3
and 8. Finally, a threshold approach is employed to detect the
EEG anomaly signal, and this can be used to achieve the
epileptic seizure detection.

Experimental Results and Discussion
In this section, we present a case study on the public available
EEG database of University of Bonn (UoB), Germany, to
demonstrate the effectiveness and reliability of the proposed
methodology. Noted that, for the purpose of epilepsy seizure
detection, the complex network has been first constructed with
EEG signals to form the EEG anomaly signal detection
network. Furthermore, different healthy state of patients’ will
correspond to different synchronization state of EEG anomaly
signal detection network, and the left eigenvector
corresponding to its zero eigenvalue is a visual representation
of the anomaly of the EEG signal of each node in EEG signal
detection network. Consequently, the patient can be considered
as a healthy one with smaller amplitude comparing with the
appropriately adaptive dynamic threshold, and the duration
time of the derivation alarm has been viewed to be longer than
toleration time toc, and the patient will be considered to be in
epilepsy seizure state.

Figure 2. Typical sample of EEG segment from each subset obtained
from dataset (A-E). The y-axis in each graph donates the amplitude in
μV and the x-axis in each graph represents time in seconds (s).

Figure 2 represents the typical sample of EEG segment from
each subset in A-E datasets. The y-axis in each graph donates
the amplitude in μV and the x-axis in each graph represents

time in seconds (s). Obviously, the amplitude of dataset E is
very different between others. However, the difference between
the other four datasets is quietly small, which cannot be
detected out by traditional methodology. Furthermore, the
traditional detection methods can only be employed to analyse
a single EEG signal, and it cannot be used to detect the
relationships between the EEG signals.

The main innovate of this proposed methodology is that
epilepsy seizure detection has been developed into the problem
that the EEG data samples, reflected the healthy state of
patients’, has been divided into different categories, and then
the comprehensive synchronization state of complex network,
consists of EEG signals, can be calculated to realize the
classification of different healthy states, then the epilepsy
seizure detection can be achieved finally. In this proposed
methodology, the EEG signal sample has been taken as the
node, and the relationships between different signals have been
considered as the edge to establish the EEG anomaly signal
detection network model. Only in this way, the epilepsy seizure
detection problem can be transformed into pattern recognition
clustering problem. Furthermore, the relationships between
different EEG signals can be described into the cognitive
domain, which can make the corresponding algorithm
considered more complex problems and the model is very
intuitive, simple and universal applicability.

Typical EEG anomaly signal detection network can be seen in
Figure 3. From the figure, we can know that different
combinations with different EEG signals will correspond to
different EEG anomaly signal detection networks, and its
topology are completely different. And therefore, the
synchronization state signals of these EEG anomaly signal
detection networks are also extremely different, as shown in
Figure 4. And its corresponding left eigenvectors ξ=(ξ1, ξ2 ,...,
ξN) are also like this, as shown in Figure 5.

In this case study, 500 sample points from each EEG subsets
(like A-E), and each EEG subset has been employed with only
4000 sample points to realize 8 segments, all of these EEG
signal sets can be combined into 4000 groups. During the
simulation, the relative variables x̄ (t) have different amplitudes
and ranges, and a large difference between their maximum and
minimum values often exist. Performing certain preprocessing
operations on the inputs and outputs data are more efficient in
the training work. The data normalization step is sensitive to
the training procedure, and it has been certificated in actual
experiment.

Specifically, the following case study is performed on the raw
data by the following equation, Xn=2 (X-a)/(b-a)  where a, b
represents the maximum and minimum ranges of the signal X,
respectively, and Xn donates the normalized X.
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Figure 3. Different typical EEG anomaly signal detection network combined by different EEG subsets from datasets (A-E).

Figure 4. Synchronization state signals of these EEG anomaly signal
detection networks, calculated by EEG signal sets (A-E).

Figure 5. All of these left eigenvectors ξ=(ξ1, ξ2 ,..., ξN), which
corresponds to these EEG anomaly signal detection networks (A-E).

Figure 4 represents 4000 synchronization state signals of the
4000 segments. From the previous 2400 EEG signal segments,
its synchronization states are quite small, which means these
EEG signals are from healthy human being or a patient, who
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are not in the epileptic seizure period. However, the change on
variance of middle 800 EEG signal segments is slow, and this
means that the D EEG signal is collected from a patient, who is
on the verge of imminent epilepsy seizure. Finally, the last 800
synchronization state signals are changing violently, and this
tells us that these EEG signals are collected from an epilepsy
patient.

Figure 5 represents all of the left eigenvectors ξ=(ξ1, ξ2,..., ξN),
which corresponds to the zero features of the couple matrix
A=(aij)N × N. The local details of EEG anomaly signal detection
network can be described by these left eigenvectors. In Figure
5, every signal consisted by 500 sample points, including 100
sample points from each EEG signal set (A-E). The changes of
previous 300 sample points are quite small, while 100 sample
points in middle has some variations in glitches. And the last
100 points have violently changed, which are from epilepsy
patients.

It should be noted that it is very easy to observe the epilepsy
seizure time, as shown in Figures 4 and 5. After the epilepsy
seizure happen or before happen, the EEG signal, from the
corresponding patients, vibrates violently. And then
synchronization state and corresponding left eigenvectors will
increase. Above all, the epilepsy seizure can be detected
effectively by our novel unsupervised automated epileptic
seizure detection methodology and the performance has been
certificated and illustrated.

Conclusions, Limitations and Future Work
This paper, a novel methodology is proposed to realize
epilepsy seizure detection for potential patients with epilepsy,
which is established on the full consideration on building
concise and efficient architecture, and this can be employed to
achieve the goal on unsupervised automated epilepsy detection.
In the light of this framework, the epilepsy seizure detection
methodology will have a ability to self-correction and self-
training, which can be employed to provide some approaches
to realize the epilepsy seizure detection.

The proposed methodology can be employed to solve one of
the most challenging tasks on automated epileptic seizure
detection. This paper firstly introduced the concept of
synchronization state of complex network, and then an EEG
anomaly detection network has been defined by taking the
measurement EEG signals. The study on the public available
EEG database of University of Bonn (UoB), Germany, had
shown that synchronization state can be employed to assess the
level of healthy state with EEG signals. And the effectiveness
and validity of our proposed method have also been verified by
this case study. Furthermore, the excellent performance of the
proposed method result has shown that this method can be
employed to track the patient healthy state and monitor the
moment of epilepsy seizure.

The endeavours in this paper are to develop a comprehensive
evaluation on the confusion state of healthy or disease from the
original EEG signal. The classification of seizure method is not
intended to substitute physicians, but rather to supply them an

additional analyzing tool. The excellence and limitations of
this paper can be summarized as following sentences. The first
one is that this novel automated epileptic seizure detection
methodology can be employed as an adaptive and unsupervised
feature extraction method. And furthermore, synchronization
state is the research result of complex network theory, which
can be employed to realize the goal on assess the level of
healthy state with EEG signals for epilepsy patients. The
advantage lies at that it is possible to analyse the EEG signals
both from the global perspective and the local perspective to
assess the healthy state of epilepsy patients.

However, how the performance of the proposed model will
develop with time going and this will be the first question that
we will continue to study. Whether this model is suitable to
realize the epilepsy seizure detection for other potential
patients is also our consideration and it has become our one
research direction and hot topics over the next several decades.
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