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Short Communication

Introduction

There are various methods to solve the linear equation, The Cramer's rule is the most common of these methods [1], Klein [2] 
described the approach based upon Cramer’s rule, the of the linear equation system can be written in matrix form: Ax b= , Cramer’s 
rule is efficient in solving systems of 2 linear equations. Some recent developments of using Cramer’s rule described in some papers, 
these papers can be found in [3-5] and the references therein.

Solving linear equations

First, this paper introduces a simple method for solving general systems of 2 linear equations, and we will prove it using Cramer's 
rule as following:

Rule (1): If we have a real numbers a1, a2, b1, b2, c1 and c2, and the variables x, y, if we have the following system with first 
order linear equation:

1 1 1a b = cx y+  and 2 2 2a b = cx y+  and the determinant 1 1
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Proof: We can prove the above rule by using Cramer's rule, as we know when we use Cramer's rule we find that:-
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First, we want to prove that 
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2 2
1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1(a b a b )(a b a b ) = 2a c b b 2a c b b a b b c a b c a b c a b b cx⇒ − − − − + + + +

2 2
1 2 2 1 1 2 2 1 1 2 1 2 1 2 1 2 1 1 2 2 1 2(a b a b )(a b a b ) = a c b b a b c a c b b a b cx⇒ − − − + − +

2 2
1 2 2 1 1 2 2 1 1 2 1 2 1 2 1 2 1 1 2 2 1 2(a b a b )(a b a b ) = a c b b a b c a c b b a b cx⇒ − − − + − +

This paper proposes a simple method to solve the first order linear equations, the proposed 
method is equivalent to classical Cramer’s rule for solving general systems of 2 linear equations, 
then it describes if there is a relationship between this method and the derivatives. The results 
show that there is a possible relationship between the method presented in this paper and the 
derivatives. Furthermore, we can use the first derivative to solve linear equations with first order.
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Similarly, we can prove also that 1 2 2 1
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 by using the above method.

The possible relation between rule 1 and the first derivative: -

Now we will discuss if there is a relation between rule 1 and derivatives: -

Using the same equation in rule (1):-
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dy  by the following matrix:-
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Thus, if we want to find the values of x and y we can easily reach to the same results in Rule 1, where the two columns that we used 

to find x in rule 1 is similar to the coefficients of the constants and the variable y in the matrix of 
df
dx

respectively:-
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Similarly, the two columns that we used to find y in rule 1 is similar to the coefficients of the variable x and the constants in the 

matrix of 
df
dy

respectively: -
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Solving linear equations with first order by first derivatives

To explain how to solve linear equations with first order by first derivatives; suppose we have the following linear equation system: -

2 4x y+ =
3 5x y− =

Let 1 1 1 2 2 2( , y) (a b - c )(a b -c )f x x y x y= + + ( )( 2 4) 3 5x y x y= + − − −
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Now to find the value of Y:-
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Conclusion
We have studied a simple method for solving systems of 2 linear equations. The method can be easily applied to systems of 2 linear 
equations. Also, we have described if there is a relationship between this method and the first derivative, the paper show that there is 
a possible relationship between them, and we can solve linear equations with first order by first derivatives.
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