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A new approach for solving linear equations with first order through derivatives.
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Abstract

This paper proposes a simple method to solve the first order linear equations, the proposed
method is equivalent to classical Cramer’s rule for solving general systems of 2 linear equations,
then it describes if there is a relationship between this method and the derivatives. The results
show that there is a possible relationship between the method presented in this paper and the
derivatives. Furthermore, we can use the first derivative to solve linear equations with first order.
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Introduction

There are various methods to solve the linear equation, The Cramer's rule is the most common of these methods [1], Klein [2]
described the approach based upon Cramer’s rule, the of the linear equation system can be written in matrix form: Ax=54, Cramer’s
rule is efficient in solving systems of 2 linear equations. Some recent developments of using Cramer’s rule described in some papers,
these papers can be found in [3-5] and the references therein.

Solving linear equations

First, this paper introduces a simple method for solving general systems of 2 linear equations, and we will prove it using Cramer's
rule as following:

Rule (1): If we have a real numbers a, a,, b, b,, ¢, and c,, and the variables x, y, if we have the following system with first
order linear equation:

a b
a,x+b,y=c, and a,x+b,y=c, and the determinant D=| ' bl #0
a'Z 2
Then:-
D2y = _(alcz + a'ch) a;b, +a,b,
—(bc,+b,c;) 2bb,
Dty = 2aa, —(a,c,+a,c)
a,b,+a,b, —(blc2 +bzcl)

Proof: We can prove the above rule by using Cramer's rule, as we know when we use Cramer's rule we find that:-

— bzcl _blcz (1)
ab,—a,b,
a.c a,C
d y=212 2¥1 2
e albz_azbl @

Fi hat D*x = _(aICZ + a2C1) a,b, +a,b,
irst, we want to prove that (be,byc,) 2bb,
=(a,b,—a,b,)(a,b, —a,b)x=-2a,c,bb,—2a,cbb,+ab,bc,+ab, ¢, +a,b’c,+a,b b,c,
= (a,b, —a,b,)(a,b, —a,b,)x=—2ac,bb, —2a,c,bb,+ab,bc,+ab,’ c,+a,b’c,+a,b by,
— 2 2
=(a,b, —a,b,)(a,b, —a,b,)x=-a,c,bb,+ab,”c,—a,cbb,+a,bc,

=(a,b, —a,b,)(a;,b, —a,b,)x=-a,c,bb, +alb22 c,—a,cb,b, +a2b12 c,
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= (a;b, —a,b,)(a;b, —a,b)x=ab,(b,c, —b,c,)—a,b,(b,c, ~bic,)
=(a,b, —a,b,)(a;b, —a,b,)x=(b,c, —b,c,)—(a;b, —a,b,)

b,c,—b,c
— x=—21 1™
a,b, —a,b,
- 2,6, — 3,6 .
Similarly, we can prove also that ) =—————— by using the above method.
a,b, —a,b,

The possible relation between rule 1 and the first derivative: -
Now we will discuss if there is a relation between rule 1 and derivatives: -

Using the same equation in rule (1):-

ax+by=c,=ax+by-c¢=0

x,y)=(a,x+b,y-c,)(a,x+b,y-c
azx+b2y=c2 :>a2x+b2y'C2:0}f( Y) ( 1 ly 1)( 2 2)/ 2)

d

d_iz(zalaZ)x-i_ (a1b2 +azb1)y_(alcz + a2cl)
af

d—yz(alb2 +a,b,)x+(2b,b,)y—(b,c, +b,c))

daf

We can represent E and

dy

by the following matrix:-

Coefficients of x Coefficients of y Coefficients of the constants
\ 2 2

2aa, ab,+a,b, —(alc2 + azcl)
ab,+a,b, 2b,b, - (blc2 +b2c1)

Thus, if we want to find the values of x and y we can easily reach to the same results in Rule 1, where the two columns that we used
to find x in rule 1 is similar to the coefficients of the constants and the variable y in the matrix of % respectively:-

B —(ajc;+a,c;) ab,+a,b,

- —(b,c,+b,c,) 2bb,

Similarly, the two columns that we used to find y in rule 1 is similar to the coefficients of the variable x and the constants in the

matrix of —— respectively: -
dy
2aa, —(a,c,+ a,c))

Y= a,b,+a,b, —(b,c, +b,c,)

2

Solving linear equations with first order by first derivatives

To explain how to solve linear equations with first order by first derivatives; suppose we have the following linear equation system: -
x+2y=4
3x—y=5

Let f(x,y)=(a,x+b,y-c)(a,x+b,y-c,) =(x+2y-4)(3x-y-5)
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af af
Y 1(Bx—y—5)+3(x+2y—4)=
0 (3x—y=5)+3(x+2y—4) y
a
dy

_(alcz + azcl) a,b, +a,b,

D’x =
—(b,c,+byc,) 2bb,

, <17 s
(=7) %= —4‘
49x=98=>x =2

Now to find the value of Y:-

2

Dy=

6 -17
7V y=
TV r=ls g
49y=49=y =1

Conclusion

=6x+5y—-17

X

=2(3x—y—5)—1(x+2y—4)3ji=5x—4y—6
y

_2aja, —(ac,+ a,c,)
ab, +a,b, —(b,c,+b,c,)

Obeid

We have studied a simple method for solving systems of 2 linear equations. The method can be easily applied to systems of 2 linear
equations. Also, we have described if there is a relationship between this method and the first derivative, the paper show that there is
a possible relationship between them, and we can solve linear equations with first order by first derivatives.
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