A new approach for solving linear equations with first order through derivatives.

Rami Obeid*

Head of data management and analysis division, Central bank of Jordan, Jordan

Abstract

This paper proposes a simple method to solve the first order linear equations, the proposed method is equivalent to classical Cramer's rule for solving general systems of 2 linear equations. then it describes if there is a relationship between this method and the derivatives. The results show that there is a possible relationship between the method presented in this paper and the derivatives. Furthermore, we can use the first derivative to solve linear equations with first order.

Keywords: Linear equations, Matrix, First derivatives, Cramer's rule.

Accepted on September 17, 2018

Introduction

There are various methods to solve the linear equation, The Cramer's rule is the most common of these methods [1], Klein [2] described the approach based upon Cramer's rule, the of the linear equation system can be written in matrix form: Ax = b, Cramer's rule is efficient in solving systems of 2 linear equations. Some recent developments of using Cramer's rule described in some papers, these papers can be found in [3-5] and the references therein.

Solving linear equations

First, this paper introduces a simple method for solving general systems of 2 linear equations, and we will prove it using Cramer's rule as following:

Rule (1): If we have a real numbers a₁, a₂, b₁, b₂, c₁ and c₂, and the variables x, y, if we have the following system with first order linear equation:

 $a_1x + b_1y = c_1$ and $a_2x + b_2y = c_2$ and the determinant $D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$

Then:-

 $\mathbf{D}^{2}x = \begin{vmatrix} -(a_{1}c_{2} + a_{2}c_{1}) & a_{1}b_{2} + a_{2}b_{1} \\ -(b_{1}c_{2} + b_{2}c_{1}) & 2b_{1}b_{2} \end{vmatrix}$ $D^{2}y = \begin{vmatrix} 2a_{1}a_{2} & -(a_{1}c_{2} + a_{2}c_{1}) \\ a_{1}b_{2} + a_{2}b_{1} & -(b_{1}c_{2} + b_{2}c_{1}) \end{vmatrix}$

Proof: We can prove the above rule by using Cramer's rule, as we know when we use Cramer's rule we find that:-

$$x = \frac{b_2 c_1 - b_1 c_2}{a_1 b_2 - a_2 b_1} \tag{1}$$

and $y = \frac{a_1c_2 - a_2c_1}{a_1b_2 - a_2b_1}$ First, we want to prove that $D^2x = \begin{vmatrix} -(a_1c_2 + a_2c_1) & a_1b_2 + a_2b_1 \\ -(b_1c_2 + b_2c_1) & 2b_1b_2 \end{vmatrix}$ $\Rightarrow (a_1b_2 - a_2b_1)(a_1b_2 - a_2b_1)x = -2a_1c_2b_1b_2 - 2a_2c_1b_1b_2 + a_1b_2b_1c_2 + a_1b_2^2c_1 + a_2b_1^2c_2 + a_2b_1b_2c_1$ $\Rightarrow (a_1b_2 - a_2b_1)(a_1b_2 - a_2b_1)x = -2a_1c_2b_1b_2 - 2a_2c_1b_1b_2 + a_1b_2b_1c_2 + a_1b_2^2c_1 + a_2b_1^2c_2 + a_2b_1b_2c_1$ \Rightarrow (a₁b₂ - a₂b₁)(a₁b₂ - a₂b₁)x = -a₁c₂b₁b₂ + a₁b₂²c₁ - a₂c₁b₁b₂ + a₂b₁²c₂ $\Rightarrow (a_1b_2 - a_2b_1)(a_1b_2 - a_2b_1)x = -a_1c_2b_1b_2 + a_1b_2^2c_1 - a_2c_1b_1b_2 + a_2b_1^2c_2$

(2)

$$\Rightarrow (a_{1}b_{2} - a_{2}b_{1})(a_{1}b_{2} - a_{2}b_{1})x = a_{1}b_{2}(b_{2}c_{1} - b_{1}c_{2}) - a_{2}b_{1}(b_{2}c_{1} - b_{1}c_{2})$$

$$\Rightarrow (a_{1}b_{2} - a_{2}b_{1})(a_{1}b_{2} - a_{2}b_{1})x = (b_{2}c_{1} - b_{1}c_{2}) - (a_{1}b_{2} - a_{2}b_{1})$$

$$\Rightarrow x = \frac{b_{2}c_{1} - b_{1}c_{2}}{a_{1}b_{2} - a_{2}b_{1}}$$

Similarly, we can prove also that $y = \frac{a_1c_2 - a_2c_1}{a_1b_2 - a_2b_1}$ by using the above method.

The possible relation between rule 1 and the first derivative: -

Now we will discuss if there is a relation between rule 1 and derivatives: -

Using the same equation in rule (1):-

$$\begin{array}{l} a_{1}x + b_{1}y = c_{1} \Longrightarrow a_{1}x + b_{1}y - c_{1} = 0 \\ a_{2}x + b_{2}y = c_{2} \Longrightarrow a_{2}x + b_{2}y - c_{2} = 0 \end{array} \} f(x, y) = (a_{1}x + b_{1}y - c_{1})(a_{2}x + b_{2}y - c_{2}) \\ \frac{df}{dx} = (2a_{1}a_{2})x + (a_{1}b_{2} + a_{2}b_{1})y - (a_{1}c_{2} + a_{2}c_{1}) \\ \frac{df}{dy} = (a_{1}b_{2} + a_{2}b_{1})x + (2b_{1}b_{2})y - (b_{1}c_{2} + b_{2}c_{1})$$

We can represent $\frac{df}{dx}$ and $\frac{df}{dy}$ by the following matrix:-

Thus, if we want to find the values of x and y we can easily reach to the same results in Rule 1, where the two columns that we used to find x in rule 1 is similar to the coefficients of the constants and the variable y in the matrix of $\frac{df}{dx}$ respectively:-

$$D^{2}x = \begin{vmatrix} -(a_{1}c_{2} + a_{2}c_{1}) & a_{1}b_{2} + a_{2}b_{1} \\ -(b_{1}c_{2} + b_{2}c_{1}) & 2b_{1}b_{2} \end{vmatrix}$$

Similarly, the two columns that we used to find y in rule 1 is similar to the coefficients of the variable x and the constants in the matrix of $\frac{df}{dx}$ respectively: -

$$D^{2}y = \begin{vmatrix} 2a_{1}a_{2} & -(a_{1}c_{2} + a_{2}c_{1}) \\ a_{1}b_{2} + a_{2}b_{1} & -(b_{1}c_{2} + b_{2}c_{1}) \end{vmatrix}$$

Solving linear equations with first order by first derivatives

To explain how to solve linear equations with first order by first derivatives; suppose we have the following linear equation system: - x+2y=4

$$3x - y = 5$$

Let $f(x, y) = (a_1x + b_1y - c_1)(a_2x + b_2y - c_2) = (x+2y-4)(3x-y-5)$

$$\frac{df}{dx} = 1(3x - y - 5) + 3(x + 2y - 4) \Rightarrow \frac{df}{dx} = 6x + 5y - 17$$
$$\frac{df}{dy} = 2(3x - y - 5) - 1(x + 2y - 4) \Rightarrow \frac{df}{dy} = 5x - 4y - 6$$
$$D = \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} = -7$$
$$D^{2}x = \begin{vmatrix} -(a_{1}c_{2} + a_{2}c_{1}) & a_{1}b_{2} + a_{2}b_{1} \\ -(b_{1}c_{2} + b_{2}c_{1}) & 2b_{1}b_{2} \end{vmatrix}$$
$$(-7)^{2}x = \begin{vmatrix} -17 & 5 \\ -6 & -4 \end{vmatrix}$$

$49x = 98 \Longrightarrow x = 2$

Now to find the value of Y:-

$$D^{2}y = \begin{vmatrix} 2a_{1}a_{2} & -(a_{1}c_{2} + a_{2}c_{1}) \\ a_{1}b_{2} + a_{2}b_{1} & -(b_{1}c_{2} + b_{2}c_{1}) \end{vmatrix}$$
$$(-7)^{2}y = \begin{vmatrix} 6 & -17 \\ 5 & -6 \end{vmatrix}$$

$$49y = 49 \implies y = 1$$

Conclusion

We have studied a simple method for solving systems of 2 linear equations. The method can be easily applied to systems of 2 linear equations. Also, we have described if there is a relationship between this method and the first derivative, the paper show that there is a possible relationship between them, and we can solve linear equations with first order by first derivatives.

References

- 1. Cramer G. Introduction l'Analyse des lignes Courbes algbriques. Europeana, Geneva. 1750;2:656-59.
- 2. Klein RE. Teaching linear systems theory using Cramer's rule. IEEE Transactions on Education. 1990;33:258-67.
- Diaz-Toca GM, Vega GL, Lombardi H. Generalizing Cramer's rule: Solving uniformly linear systems of equations. SIAM J. Matrix Anal and Appl. 2005;27:621-37.
- 4. Habgood K, Arel I. A condensation-based application of Cramer's rule for solving large-scale linear systems. J Discrete Algorithms. 2012;10:98-109.
- 5. Kyrchei II. Cramer's rule for quaternionic systems of linear equations. Journal of Mathematical Sciences. 2008;155:839-58.

*Correspondence to:

Rami Obeid Head of data management and analysis division Central bank of Jordan, Jordan Tel: 962-795-855-036 E-mail: Rami.obeid3@gmail.com