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Abstract

Epilepsy is, in general, a diseased condition where the brain fires abnormal signals, which results in
convolutions in the muscles-which occurs suddenly to the patients. In this work, we prescribe a novel
method to automatically identify the onset of epileptic seizures. A moving window approximate entropy
(ApEn) is run over the Electroencephalogram (EEG) signal with the epileptic seizures. ApEn value
drops at the conjuncture of the onset of the epileptic seizures. This ApEn characteristic drop is
considered as feature for detecting the onset. Moreover this ApEn characteristic drop is enhanced using
wavelet transform forming the feature to be in ApEn wavelet framework. Three neural networks namely
Feed forward Back propagation, Elman and Radial basis networks is employed for automatically
detecting the onset of the epileptic seizure. They are compared with each other for their performance
with ApEn as feature and ApEn in wavelet framework as feature. It was found that radial basis network
is giving a better overall accuracy of 94%, when their inputs are features being ApEn in wavelet
framework. Additionally, the onset sample detected by the algorithm and manually identified onset
sample by the encephalographers are compared and it was found that our algorithm was able to detect
the onset of the epileptic seizures with an average detection delay of only 0.2 second for the 200 segments
of EEG considered across 31 patients, which is low compared to earlier works in the literature.
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Introduction
Electroencephalogram (EEG) is discovered in 1930 [1]. It is a
recording of the activity of the brain. It was also able to record
the abnormal patterns arising in the brain. These abnormal
patterns are called as epileptic seizures. About 50 million
people i.e. roughly 1% of population in this world have
epilepsy [2,3]. A person having this disorder is not easily
received by common people even to the degree of prohibiting
marriages. A person with this disorder experiences sudden
seizures resulting in convolutions of his muscles and
experiences a strange behaviour. Although by the disease itself
does not lead to dangerous condition, rather it can be
dangerous if the person is swimming or driving, as it can lead
to loss of consciousness or disturbances in the movements or
disturbances in the mental state. Seizures are of different types.
They are classified primarily based on the source of the seizure
within the brain namely localized or distributed. In the
localized seizures are named as partial or focal seizures and
distributed or nameless generally seizures. Partial seizures are
further classified as simple partial seizure and complex partial
seizure. If ones awareness is unaffected then it is called as
simple partial seizure and if ones awareness is affected it is
called as complex partial seizure. And generally seizures are

classified according to the effect on the body but all of them
involve loss of consciousness. These include absence (petit
mal), myoclonic, clonic, tonic, tonic-clonic (grand mal), and
atonic seizures. In general they have ictal period where there
are seizures and a period preceding that called pre ictal period.
Epileptic seizures can be recorded along with recording of the
Electroencephalogram (EEG).

A lot of works are done in the automatic detection of epileptic
seizures. Broadly speaking, researchers have used long term
EEG data or EEG data segments for detecting the epileptic
seizures. Bonn University database has EEG segments of a
fixed duration of three different categories namely normal, ictal
and inter ictal. Many researchers have employed different
algorithms with this database and classified the normal, ictal
and inter ictal EEG and reported accuracies as high as 99% [4].
In terms of techniques, starting from the 1970’s different
methods has been employed. Initially heuristic and descriptive
methods were used for the detection of epileptic seizures [5].
Later time domain methods, frequency domain methods, time
frequency domain methods and other non linear methods were
all attempted for seizure detection [6]. Linear discriminant
analysis (LDA), histogram methods were also used for
automatically detecting the epileptic seizures [7,8]. Seizure
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termination was identified using sample entropy [9].
Differential operation was also used to identify the seizures
[10]. Recurrence quantification Analysis (RQA) [11], Higher
order spectra (HOS) [12], Hurst exponent (H) [13.], different
entropies [14] were all employed for the identification of
epileptic seizures. There are also works where they have
employed wavelet transforms with single level analysis for
detecting the epileptic seizures [15,16]. Multilevel wavelet
approach was also employed by Indiradevi et al. for
automatically detect the epileptic spikes [1]. Sharma et al. has
used Fast Fourier transform (FFT) for extracting features from
EEG as a first step and employed these features to the neural
network for identifying the seizure [17].

Works are also done for automatically detecting the onset of
the epileptic seizures. Different methods of machine learning
algorithms with pattern recognition such as neural networks
[18-24], support vector machines [25,26], KNN classifier [27],
Bayesian classifier [28] have been implemented. Features such
as correlation dimension [29], correlation density [30],
Lyapunov exponent [31], Kolmogorov entropy [32] have been
used for onset detection. Fourier transform was also
implemented for onset detection of epileptic seizures [33-35].
Some researchers have also used wavelet transforms [36-38] to
detect the seizure onsets. Details on the techniques and results
of the different studies are discussed and compared with our
technique in the discussion section. In our work, we are
proposing a novel technique involving ApEn characteristic
drop enhanced by wavelet transform which forms the feature:
ApEn in wavelet framework to identify the onset of epilepsy –
which no one has yet used as for the knowledge of the author
for onset detection of epileptic seizures. We achieved an
average detection delay of only 52 samples from the onset of
epileptic seizure, which comes out to be 0.2 seconds for 256
samples per second sampling rate of acquisition of the EEG
signals, with an overall accuracy of 94% across the 200 data
considered from 31 patients.

The paper is organized as follows, section 2 presents the
description of the data which we have used in this work,
introduces ApEn, moving window ApEn, wavelet transform
which enhances the characteristic drop of the ApEn at the
conjuncture of the seizure, different neural networks which are
employed for automatic onset detection and the performance
measures to evaluate the accuracy of the onset detection of the
neural networks. Section 3 presents the results obtained in this
work. Salient review of different techniques related to
automatic epileptic seizure detection is discussed along with
comparison of the results in the section 4. The conclusion and
future scope is given in section 5.

Methods and Materials
In this section, we describe the methods that we have
employed for automatic detection of the onset of epileptic
spikes.

Data
The EEG data for this work was collected from the Department
of Neuromedicine, Thanjavur Medical College Hospital,
Thanjavur. The dataset contains two types, i.e., normal EEG,
normal EEG followed by the onset of epileptic seizures. The
EEG was recorded using a neuroscan machine Neuromax from
Medicaid systems with 64 channels, 256 Hz sampling rate and
a 16 bit A/D converter. Two encephalographers were asked to
extract a standard length of artefact free EEG data – to avoid
subjective errors. The standard length is formed in the
following way: 16 seconds before the onset of epileptic
seizures and 16 seconds after the onset of epileptic seizures is
formed as one segment of data with the total duration of 32
seconds. A total of 200 such segments of EEG data are
extracted from the 31 patients involved in the study.

Approximate entropy (ApEn)
ApEn is a recent measure to find the regularity of a signal. This
algorithm was proposed by Pincus [39].

ApEn calculation
ApEn is a statistic for measuring regularity that quantifies the
unpredictability of variations in a time series, T (i). The
presence of regular patterns of variations in a time series makes
it predictable. A time series which has many similar patterns
has a lower ApEn relatively and a time series with random
patterns has relatively larger ApEn. The algorithm for
calculating ApEn has been published in different articles
[40-43]. A general short summary of the calculations for ApEn
is given as below.

Consider a sequence QM, which consists of M continuous
measurements T (1), T (2), … , T (M). To compute
approximate entropy for this sequence, values have to be
chosen for the parameters m and r in the function ApEn (QM,
m, r). The parameter m represents the pattern length and r is
the criteria of similarity. Pm (i) is a vector of a subsequence of
m measurements starting at measurement i within the sequence
QM. Two patterns are considered as similar if their difference
between any of the measurements in the patterns is less than r.
Now let us consider the set Pm of all patterns of length m
within QM. We may now define Cim(r)=nim/(N-m+1), where
nim(r) is the number of patterns in Pm that are similar to Pm(i)
(given the similarity criterion r). The quantity Cim(r) is the
fraction of patterns of length m that resemble the pattern of the
same length that begins at interval i. We can calculate Cim(r)
for each pattern in Pm, and we define Cm(r) as the mean of
these Cim(r) values. The quantity Cm(r) expresses the
prevalence of repetitive patterns of length m in SN. Finally, we
define the approximate entropy of SN, for patterns of length m
and similarity criterion r, as ApEn (SN, m, r)=ln [Cm(r)/Cm
+1(r)] i.e., as the natural logarithm of the relative prevalence of
repetitive patterns of length m compared with those of length
m+1.

Thus, if it is found that similar patterns in a time series, ApEn
estimates the logarithmic likelihood that the next intervals after
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each of the patterns will differ (i.e., that the similarity of the
patterns is mere coincidence and lacks predictive value).
Smaller values of ApEn imply a greater likelihood that similar
patterns of measurements will be followed by additional
similar measurements. If the time series is highly irregular, the
occurrence of similar patterns will not be predictive for the
following measurements, and ApEn will be relatively higher.

It should be noted that ApEn has significant limitations,
notably its strong dependence on sequence length and its poor
self-consistency (i.e., the observation that ApEn for one data
set is larger than ApEn for another for a given choice of m and
r should, but does not, hold true for other choices of m and r).
Hence in this work, we have kept a standard number of
samples for the calculation of ApEn.

ApEn for a standard Periodic and Random signal
We have generated three standard signals. Firstly a sine wave,
secondly a square wave and thirdly a sawtooth wave each with
a frequency of 1 KHz. The ApEn code is written in Matlab 7
and it is calculated for each of these standard signals. It is
found that the ApEn values for these signals are 0.0026, 0.0010
and 0.00002 respectively. The three signals and their
corresponding ApEn values are shown in the Figure 1. It is
inferred from this that for a periodic signal, the ApEn value is
almost zero. A random signal is also generated and ApEn is
calculated for the same and it was found to be 0.8358. The
random signal and its corresponding ApEn value are shown in
Figure 2. From this it is inferred that ApEn value will be higher
for a random signal than a periodic signal.

Figure 1. ApEn Values for a Standard Periodic signals.

Figure 2. ApEn value for a Random Signal.

ApEn for a normal EEG and an Epileptic EEG
A normal EEG signal is almost like a random signal. There is
no periodicity in a normal EEG signal. On the other hand, the
doctors say that an Epileptic EEG is very less random and has
some form of repetitive spikes or spike and wave structure.
Therefore the ApEn value for a normal EEG and an Epileptic
EEG must definitively be different. Hence this feature can be
used as a feature for detecting the onset of Epileptic EEG. This
is described in the following section.

Moving window ApEn
At the first step, the length of an epileptic spike in terms of
number of samples for a spike is determined. For this 20
epileptic spikes from different patients at different timings
were located with the help of two encephalographers to avoid
subjective errors. From this, the average number of samples for
the epileptic spike is identified to be 41. Also it is also found
from the literature that the total number of samples for
epileptic spike is 41, for a 256 samples per second sampling
rate of acquiring the EEG [1,44].

Hence we have employed a moving window size of 41 samples
for ApEn calculation on the EEG signals. This window moves
for every sample and calculates the ApEn for the next 41
samples. In essence, this window searches for the epileptic
spike. Till the occurrence of the epileptic spike, this window
gives the ApEn values for the normal EEG signal for each
sample and the forthcoming 41 samples. These ApEn values
will be generally larger. But at the onset of epileptic seizure,
the ApEn value drops due to some regularity nature of the
epileptic seizures. This dropping of ApEn value at onset of
epileptic seizures is shown in the Figure 3, where we can see
that at the sample 4048 where the epileptic seizure is getting
onset, the ApEn value goes to 0.6671. Thus this puts the signal
in the ApEn domain forming our feature for automatically
detecting the onset of epileptic seizures.

Figure 3. ApEn drop at the onset of epileptic seizure.

Wavelet transform
In order to enhance the characteristic drop in the ApEn domain
and therefore to have a clear discrimination at the onset of
epileptic seizure, we applied discrete wavelet transform to this
signal. In order to choose a wavelet basis function that matches
the shape of ApEn characteristic drop, we computed
correlation between the shape of ApEn characteristic drop and
various wavelet bases available in the Matlab tool box. Based
on the maximum correlation obtained we chose Daubechies 2
(DB2) wavelet. Figure 4 shows the similarity between DB2
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wavelet and the shape of the ApEn characteristic drop. This
type of approach is not available in the literature as far as the
knowledge of the author and thus forming a part of the novelty
of this work. We decomposed this signal using Db2 wavelet up
to 5 levels. The decomposed signal is shown in Figure 5. The
signal is reconstructed using soft threshold method and the
reconstructed signal is shown in Figure 6. This is referred as
the feature ApEn in wavelet framework.

Figure 4. A) Db2 wavelet; B) The signal at the ApEn drop at the
onset of epileptic seizure.

Figure 5. Db2 Wavelet Decomposition of the signal in ApEn domain.

Figure 6. Reconstructed or Denoised Signal of the ApEn domain
using wavelet transform.

Neural network classifier
The reconstructed signals are to be used as inputs to the neural
networks to automatically identify the onset of the epileptic
seizures. Artificial neural networks (ANN) are proven to be
good classifiers due to their inherent characteristics such as self
organization, adaptive learning, and robustness. They are
useful in situations where enough data are available for
training. Different types of ANNs have been used for the
detection of epileptic seizures in the literature [43-47].
However here we are using the feature ApEn in wavelet
framework as input to the ANN. Here we have employed three
different neural networks namely feed forward back
propagation network, radial basis network, Elman network are
tried to automatically detect the onset of epileptic seizures.

Salient details of the three neural networks, about its target,
configuration and threshold values are given below.

Feed forward network: The feed forward algorithm is simple
and the information moves only in one direction and there are
no cycles or loops. For the training of the network we use back
propagation algorithm in which the error in the data generated
is propagated back into the layer by using appropriate weights
and the threshold values (Bias). The feed forward neural
network we used consists of one hidden layer with 5 nodes
(neurons in the hidden layer) and the transfer function used for
classification is tan-sigmoidal function in hidden layer as well
as in the output layer. The output layer has only one node. The
gradient descent algorithm is used for back propagation
training of the neural network. The input to the neural network
is the feature ApEn in wavelet framework. In the neural
network, the target is fixed as follows: Epileptic signal is given
a value of 0 and for non-epileptic signal the value is 1. The
neural network classify the epileptic signal within a range of
values 0 to 0.3 and non-epileptic from 0.8 to 1.

Radial basis network: The radial basis network uses
interpolation technique as tool to perform classification. The
activation function used is Gaussian radial basis function. The
radial basis network adds the neurons to the hidden layer to
reach the specified mean squared error. The network consists
of an input layer, a hidden layer and an output layer. We are
assuming the maximum number of neurons that can be added
to the layer is 25 and the number of neurons at each stage of
the iteration to be added is 1. The input to network is similar to
the feed forward network. The target to the neural network is
fixed as: epileptic signal is 0 and non- epileptic signal is 1.
After classification the values generated by the neural network
for epileptic signal is within the range of 0 to 0.4 and for non-
epileptic signal are 0.7 to 1.07.

Elman network: Elman network is a type of recurrent layer
network with two hidden layers. In Elman network it has a
special copy layer where it stores the previous pattern and used
for the communication between the hidden layers. Thus the
network works with the current input values, past records of
states of the neurons and the output values. For training of the
network we use back propagation algorithm in which the error
is propagated through both the hidden layers to the input layer.
The numbers of nodes used in the hidden layers are 90. The
transfer function used in the hidden layer for classification is
tan-sigmoidal and in the output layer is log-sigmoidal. The
output layer has one node. The gradient descent algorithm is
used for training of the network as a tool for back propagation
of the error by using suitable weights and threshold values. The
target to the neural network is fixed as: epileptic signal is 1 and
non- epileptic signal is 0. The classified values generated by
the neural network for the epileptic signal is above 0.26 and for
the non-epileptic signal it is below 0.2. For all the neural
networks, we have used 125 data for training and the
remaining 75 for testing.
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Performance evaluation parameters
The performance of Feed forward Back propagation network,
Radial basis network and Elman network are evaluated by
using three parameters, namely, sensitivity(SE), specificity
(SP), and over all accuracy (OA) [1].

SE(%)=(TNcp/TNap)*100

Where TNcp represents the total number of correctly detected
positive patterns and TNap represents the total number of
actual positive patterns. A positive pattern indicates a detected
seizure.

SP(%)=(TNcn/TNan)*100

Where TNcn represents the total number of correctly detected
negative patterns and TNan represents the total number of
actual negative patterns. A negative pattern indicates a detected
non-seizure.

OA(%)=(TNcdp/TNapp)*100

Where TNcdp represents the total number of correctly detected
patterns and TNapp represents the total number of applied
patterns, a pattern indicates both seizure and non-seizure.

Results
The above method was applied to 200 data sets. At first we
have trained and tested the three different neural network by
using the ApEn values obtained from the data without using
wavelet transform for enhancing the characteristic drop of
ApEn or denoising them. The output of the neural networks
namely Radial basis network, Elman network and Feed
forward back propagation network are shown in the Figures
7-9 respectively. From Figure 9 it can be seen that there are a
number of places where the feed forward back propagation
network wrongly identified the seizure onset. From Figure 8 it
can be found that the Elman network has very narrow
discrimination (0.217 for normal and 0.23 for epileptic seizure)
for classifying the onset of epileptic seizures. From Figure 7 it
is observed that the Radial basis network is able to clearly
discriminate the onset of epileptic seizure inspite of the
presence of noise in the data in ApEn domain.

Figure 7. Radial basis network before wavelet denoising.

Secondly we have also trained and tested the three different
neural network by using the feature ApEn in wavelet
framework. The output of the neural networks namely Radial
basis network, Elman network and Feed forward back
propagation are shown in the Figure 10-12 respectively. From
Figure 11 it can be seen that Elman network doesnot show any

significant improvement in discriminating the onset of
epileptic seizures even after enhancing the ApEn characteristic
drop using wavelet transform (0.2 for normal and 0.25 for
epileptic seizure). From Figure 10 it is found that the Radial
basis network did not respond to transients in the signal and
also detected the onset of the epileptic seizure accurately, in
comparison with itself (with its input being only ApEn feature
i.e., before enhancing the characteristic drop) (Figure 7). From
Figure 12 we can observe that the feed forward back
propagation network performed well in comparison with its
own (with its input being only ApEn feature i.e., before
enhancing the characteristic drop) (Figure 9). It is seen that this
network was not only able to detect the onset of epileptic
seizure accurately but also it was able to detect the termination
of the epileptic seizure. It is also inferred that after denoising
the input or enhacing the characteristic drop and giving that as
feature (ApEn in wavelet framework) for this network it did
not respond to the transients. On the other hand we can also
observe that the Radial basis network was only able to detect
the onset accurately and not the termination of the epileptic
seizure. All the figures shown has the same number of
segments as the input for training for better visual comparison
and only for radial basis network only one segment is shown
for visual clarity of the network output at the onset of epileptic
seizure.

Figure 8. Elman Network before wavelet denoising.

Figure 9. Feed forward Back propagation Network before wavelet
transform.

On the whole we find that feed forward network is only able to
discriminate the onset as well as the termination of the
epileptic seizure with its input as feature: ApEn in wavelet
framework. Elman network doesnot show fine dicrimination
between the normal signal and the epileptic seizure either with
its input being only the ApEn feature or ApEn in wavelet
framework feature to the network. Another disadvantage we
notice is that eventhough we used 90 nodes for Elman network
(which increases the computing time greatly), there is no
improvement in the results where as in other neural networks
we observe that even with less number of nodes we achieve the
required accuracy in the results. Radial basis network was
accurately able to detect the onset of the epileptic seizure and
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had only little but important improvement in clarity of the
output after its input being feature of ApEn in wavelet
framework. It was also inferred that all the networks failed to
identify the onset of the epileptic seizure around the sample
number 27000 which can be seen in the Figures 7-12, which
shows our algorithm had missed onset of the epileptic seizure.

Figure 10. Radial basis Network after wavelet denoising.

Figure 11. Elman Network after wavelet denoising.

The performance evaluvation for all these networks with ApEn
only as feature as inputs and ApEn in wavelet framwork as
feature as the inputs is shown in Table 1. Due to the very poor
results of the Elman network, we have not listed its
performance evaluation in the Table 1. From this table, we can
see that radial basis network has better sensitivity, specificity
and overall accuracy than other networks and this network also

performs well compared to itself after enhancing the ApEn
characteritisc drop at the onset of epileptic seizures in the EEG
signal through wavelet transform. In the case of feed forward
network, the specificity is less due to the occurrence of false
positive detection i.e., non epileptic signal being detected as an
epileptic signal. Due to this the overall accuracy has also
reduced. And we find significant improvement after using the
denoised ApEn values using wavelet transform as inputs to the
network.

Figure 12. Feed forward Back propagation Network after wavelet
denoising.

In addition to the above, we also located the exact onset sample
as given by the radial basis network for all the tested 75 data
and it was compared with the onset sample point as identified
manually by two encephalograpers. Table 2 shows this
information for 25 data. The difference in the number of
samples between the manually identified sample point by the
encephalogrpers and the sample point identified by our
algorithm is also shown in the Table 2. The average of this
difference is found to be 52 samples, which means that our
algorithm was able to detect the onset of epileptic seizures
immediately 52 samples which accounts to be only 0.2 second
average delay time.

Table 1. Performance Evaluation of the Neural Networks.

 Before Wavelet Denoising After Wavelet Denoising

Neural Network Feed forward back propagation network Radial basis network
Feed forward back propagation
network Radial basis network

Sensitivity (SE%) 83.5 92.5 94.5 95.5

Specificity (SP%) 50 84 89 92.5

Over All Accuracy (OA%) 62.5 87.5 91.5 94

Table 2. Epileptic onset detection.

Data No.
Visual Epileptic Onset Sample

(By Expert Doctor)
Epileptic Onset Sample Detected by our algorithm Difference in Number of Samples

1 4024 4076 52

2 4032 4084 52

3 4040 4092 52

4 4030 4084 54

5 4048 4100 52

6 4037 4089 52
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7 4043 4095 52

8 4023 4075 52

9 4042 4094 52

10 4027 4080 53

11 4025 4077 52

12 4033 4084 51

13 4044 4096 52

14 4029 4081 52

15 4038 4090 52

16 4032 4084 52

17 4047 4100 53

18 4020 4072 52

19 4039 4091 52

20 4045 4097 52

21 4028 4080 52

22 4032 4083 51

23 4037 4089 52

24 4045 4097 52

25 4000 4052 52

Table 3. Comparison of our work with other works.

Authors Characteristics Type of analysis Sensitivity (%) Detection delay

Qu and Gotman Time and frequency domain Nearest neighbour classifier 100 9.35 s

Shoeb et al. Wavelet domain SVM 94 873.2 s

Chan et al Wavelet domain SVM 89.3 <3 s

Gabor Frequency domain Self-organizing Neural network 83.8 /

D’Alessandro et al. Time, frequency, wavelet-domain and
fractal dimension Probabilistic neural network 62.5 /

Y. Zhang et al Wavelet domain Incremental NDR 98.8 10.8 ± 5.5 s

Current Study ApEn in Wavelet Framework Neural Network (Feed forward and Radial basis) 95.5 0.25 s

Discussion
There are many seizure onset detection methods which have
been developed with different levels of success. For
comparison of other works, we have considered the works
done in relation to the automatic identification of the onset of
the epileptic seizures alone. We have not compared the works
done using Bonn University database, as this data has only
individual segments of EEG in normal, Ictal and Inter Ictal
forms and not an ongoing EEG where the seizure gets onset.
Qu and Gotman implemented KNN classifier. They classified
time domain features and frequency domain features
independently from each channels [27]. They obtained an
average detection delay of 9.35 s with 100% onset detection

rate. D’Alessandro and Esteller et al. [48] used probabilistic
neural network classifier with feature vectors combined along
with time, frequency, fractal dimension, wavelet domain-which
was used for seizure prediction. The correct prediction rate was
only 62.5%. Dastidar et al. introduced a principle component
analysis (PCA) based feature enhancement method. PCA was
used as feature space from the data which was then given to the
radial basis function neural network for classification. This
method resulted in an accuracy of 99.3% [49]. But in this only
normal and interictal EEGs was only considered. In our
method, we are not using any dimensionality reduction method
for feature space creation, rather we are using a moving
window ApEn which itself forms as a feature-making it easier
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for real time detection due to its very less computation time.
On the other hand, Gabor and Leach implemented a method
based on self-organizing neural network which classifies
features extracted by two dimensional FFT [18]. This method
yielded a sensitivity of 83.8% only.

Even ApEn was used by Hasan ocak [50], but it was for
classifying a standard EEG data segment into say epileptic or
normal. He decomposed the EEG signals into wavelet
coefficients and calculated the ApEn for these coefficients. He
achieved a classification rate of 96% for the Bonn university
data which are noise free data segments already categorized
into seizure and normal. Here we are using ApEn for
identifying the onset of epileptic seizure in a raw EEG and
specifically the ApEn characteristic drop is further enhanced
with a specific wavelet transform. Our work although uses
ApEn, but it is for a completely different purpose. The work of
Hasan ocak is discussed just to bring to the light that ApEn has
been used in epilepsy detection. Similarly Srinivasan et al. [43]
used ApEn over selected segments of EEG data each with 23
second duration. Again he did not use it for the onset detection,
rather he analyzed the various parameters of ApEn for proper
classification of the EEG segment considered to be either
epileptic or normal. Similar work was also done by Guo et al.
[51], where ApEn features are derived from the wavelet
coefficients of the data from Bonn University. But in our work,
we have used the ApEn characteristic drop enhanced by
wavelet transform as a feature for the onset detection as well as
the detection delay, which the above authors have not done.
Shoeb and Edwards used discrete wavelet transform to
construct spectral features in all channels of EEG and used
SVM for classification [25]. This method obtained 94%
sensitivity with an average delay of 8 seconds. In our method,
we have used wavelet transform in the ApEn feature domain.
Kharbouch et al. build on Shoeb method and achieved a
sensitivity of 97% and could reduce the average delay to only
3.5 seconds [52]. Although the overall accuracy obtained in
our work is 94% the average detection delay is only 0.2 second
which is very low compared to other works in the literature.

The novelty of our work is discussed as follows. Although
researchers have used ApEn as a feature for detecting the EEG
components like ictal, normal and interictal [14], there is no
specific work in relation to identifying the onset of epileptic
seizures using ApEn in wavelet framework as far as the
knowledge of the authors. Here we have enhanced the
characteristic drop of the ApEn at the conjuncture of seizure
onset using a specific wavelet which matches the characteristic
drop of the ApEn. This puts the ApEn feature in wavelet
framework which we call it as feature in ApEn wavelet
framework. Using this as a feature has improved the accuracy
and early detection of the onset of the epileptic seizures. We
achieved an overall accuracy of 94% and an average detection
delay of only 0.2 second. Moreover the computation time is
very less for calculating ApEn, being an important parameter
towards building the method for real time onset detection of
epileptic seizure. Table 3 shows the comparison of our work
with others in the literature. It is found that our method has got
the least average detection delay of 0.2 second when compared

to other methods. The limitations of our work can be seen as
follows. In terms of overall accuracy and sensitivity, we got
94% and 95.5% using radial basis network respectively. This is
relatively lower compared to the method developed by Qu and
Gotman [27] and Zhang et al. [53] who achieved a sensitivity
of 100% and 98.8% respectively. Also we have manually
extracted 200 segments of artifact free EEG data of standard
fixed length across 31 patients, wherever the seizure is onset as
identified by two encephalograpers. Hence this is not the
running long term EEG for hours where our method was
tested. Also we have considered only artifact free EEG data as
input to our method which is not in general, the practical case.
Moreover ApEn depends on the sample length, thereby
limiting its use towards a fixed sample length of EEG data for
processing. With all the above things, we are in the process of
working out methods to remove the artifacts automatically as a
first stage towards building a fully automated system for real
time detection. As mentioned by Acarya et al. [6], the method
is planned to be tested on a wide range of data collected at
different places so that the method can be applied directly to
the any raw EEG data acquired, thereby attempting towards for
a fully automated real time onset detection system.

Conclusion and Future Scope
We have used a moving window ApEn on the segments of
EEG data considered. The ApEn value goes down at the onset
of the seizure. This characteristic drop of ApEn value is further
enhanced using a wavelet transform which puts the feature in
ApEn wavelet framework. This is given as inputs to the neural
network for classifying. Among the three neural networks
tested, it was identified that the radial basis network is
identifying the onset of epileptic seizure with an overall
accuracy of 94% and only with an average delay of 52 samples
which is only 0.2 second. This average time delay of 0.2
second is less compared to other methods in the literature. As
the computation time for ApEn is very small, we are in the
process of working out methods to remove the artifacts
automatically and thereby to test the method on a wide range
of data collected at different places so that the method can be
applied directly to the raw EEG data, thereby attempting for a
fully automated system.
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