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ABSTRACT 
 

This paper develops a mathematical model of the proposed pay-for-performance award 
system for an institution of higher education. Two constraints are imposed to ensure the fairness 
of the system. The model is general enough so that the payouts for the three performance levels 
(excellent, exceptional, and extraordinary) are clearly distinguished. Thus, the greater effort and 
performance that is required to achieve the highest level is rewarded with significantly higher 
monetary benefits. This outcome reinforces outstanding performance and should motivate faculty 
to perform at high levels in the future.  
 

INTRODUCTION 
 

The payoff for exceptional productivity must be substantial to make the increased effort 
of the performance, as well as the evaluation of this productivity, worthwhile (Baker, Jensen, & 
Murphy, 1988). Pay-for-performance (PFP) is a program that offers such an incentive in that it 
has been designed to improve the productivity of individuals by offering financial incentives for 
exemplary outcomes. That is, it is a one-off bonus associated with exceptional work.   

The Board of Trustees of a college of two of the authors set aside an annual PFP budget 
line item equal to eight percent of the total faculty compensation, both salary and benefits, to 
reward those who perform at an exemplary level.  

This paper develops a mathematical model of the PFP awards system and introduces two 
constraints to ensure the fairness of the proposed system. After the literature review the paper 
discusses a numerical example, develops the mathematical model and then discusses it before 
offering a conclusion in the final section.    
 

BRIEF LITERATURE REVIEW 
 

Despite the findings of a meta-analysis of 39 studies over 30 years that showed that there 
is a positive correlation between performance and financial incentives (Jenkins, Mitra, Gupta, & 
Shaw, 1998), not all studies have supported PFP. Some researchers have found little evidence of 
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the effectiveness of PFP in, for example, health care settings (Rosenthal & Frank, 2006). The 
lack of evidence in this sector, however, has done nothing to stem the enthusiasm for the 
program as more than half of a sample of health management organizations (HMOs) use PFP 
(Rosenthal, Landon, Normand, Frank, & Epstein, 2006). It is important to note that one of the 
reasons given for the lack of effectiveness in health care PFP systems was attributed to a low 
bonus size (Rosenthal & Frank, 2006). In business, the demand for PFP continues to be very 
strong, despite a weak economy, according to Mercer's 2010 U.S. Executive Compensation and 
Performance Survey (2010).  

For the purpose of this paper, PFP is distinguished from other types of incentives such as 
reinforcement on a ratio scale (e.g., piece work) and merit pay increase. It has been well-
established that piece work increases productivity over reinforcement on an interval scale (e.g., 
fixed salary) in a number of domains (Skinner, 1974). For example, a ratio reinforcement 
strategy has been found to increase productivity in tree planters (Shearer, 2004) and logging 
(Haley, 2003). Ratio scale reinforcement is obviously out of place in all areas of higher 
education beyond the experimental laboratories. Merit pay increase is a system that is used by 
some colleges in which faculty receive a percentage increase of their current salaries when they 
meet or exceed minimum outcomes. This percentage is then added to their base salaries. 

PFP is an alternative mechanism that has been proposed as a method of providing a one-
off reward for exceptional work by faculty. However, evaluation and implementation can lead to 
disastrous outcomes (Terpstra & Honoree, 2008). Hence, it is necessary to present PFP in a 
tightly constrained mathematical model that gives structure to the implementation and 
consequent reinforcement process. 

A mathematical model of a complex concept provides an objective abstract 
representation of that concept. Mathematical models allow for systematic adaptation to the 
assumptions by holding the variables in a constant ratio. By creating mathematical models, 
wordy verbal descriptions are coded into precise mathematical equations without unnecessary 
details. Issues identified by faculty as concerns in the criteria for earning the financial incentives 
can be systematically modeled and resolved without sacrificing the integrity of the model as a 
whole. 

In a study conducted by Terpstra and Honoree (2008) in which almost 500 faculty 
members were surveyed on problems undermining the effectiveness of pay based on 
performance, the most salient  problem identified by faculty was that “the merit pay increases 
that are given out are too small to motivate faculty” (p. 48). This echoes the findings in the health 
care sector settings (Rosenthal & Frank, 2006). The impact of this problem on the PFP model 
will be demonstrated. By using a realistic mathematical model to describe PFP, weights can be 
manipulated and the consequences can be evaluated before any costly mistakes are made in 
terms of money, time, and goodwill.  
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BACKGROUND 
 

The Board of Trustees of a college of two of the authors has proposed a PFP model to 
reward faculty who perform at a high level. The process to be used to determine the awards will 
be the department evaluation guidelines. These guidelines identify the evaluation parameters for 
the four areas of (i) teaching, (ii) advising and student support, (iii) college and community 
service, and (iv) scholarship.  These areas are assessed annually with reference to three 
categories: (i) “needs improvement,” (ii) “meets standards,” and (iii) “exceeds standards.” 
Faculty who achieve the “exceed standards” category in one or more of the four evaluation areas 
and who “meet standards” in the remaining areas, will be considered for a PFP award in the 
category where they “exceed standards.”  

The performance categories for the PFP model are “excellent” (Level I), “exceptional” 
(Level II), and “extraordinary” (Level III), with increasingly higher standards and payouts for 
each level. 
 

NUMERICAL EXAMPLE 
 

For expository purposes, assume that the total number of PFP awards for a particular year 
is 330 and that the total funds available in that year are two million dollars. In this example the 
highest evaluation weight of six is given to teaching area since the college is a teaching 
institution. The next most important evaluation area is assumed to be scholarship with a weight 
of four. The remaining two evaluation areas are ranked as equally important with weights of one 
each. The weights assigned to the performance categories in this example are two for excellent, 
four for exceptional and eight for extraordinary.  

One perceived problem with PFP is that the amount of the award is not viewed by the 
recipient as reflective of the effort and performance required to receive the honor (Terpstra & 
Honoree, 2008). Thus in this example the weights for the three performance categories are an 
attempt to overcome this drawback. 

Table 1 details the information for the numerical example. The awards matrix gives the 
breakdown of the 330 honorees. The weights matrix is the product of the loads assigned to the 
evaluation area and the performance criteria for each element of the matrix. For example the 
weight of two-sevenths assigned to the extraordinary performance area for teaching is the 
product of the teaching weight of one-half (6/[6+4+1+1]) and the weight for extraordinary 
performance of four sevenths (8/[8+4+2]). The matrix for the fraction of funds to be paid out is 
the proportion of the total funds for each element. This is the product of the relevant fraction 
from the weights matrix and the ratio of the number of awards for that category as a function of 
the total number of awards. For the extraordinary teaching element the fraction of 0.051948 is 
the weight of two-sevenths multiplied by ratio of the number of extraordinary teaching awards to 
the total number of awards or .181818 (60/330). The payout matrix converts the fraction of funds 
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matrix into the actual dollar amount of each award. Thus each recipient of an extraordinary 
teaching award in that year would receive a one-off payment of $14,828.54.  
 

Table 1 
Matrix Elements for the Numerical Example 

Matrix Performance criteria 
Evaluation area 

Teaching Advising Service Scholarship 

Awards  
Excellent 80 30 5 12 
Exceptional 70 15 10 8 
Extraordinary 60 10 20 10 

Weights  
Excellent 1/14 1/84 1/84 1/21 
Exceptional 1/7 1/42 1/42 2/21 
Extraordinary 2/7 1/21 1/21 4/21 

Fraction of 
funds 

Excellent 0.017316 0.001082 0.00018 0.001732 
Exceptional 0.030303 0.001082 0.000722 0.002309 
Extraordinary 0.051948 0.001443 0.002886 0.005772 

Payout  
Excellent $   3,707.13 $    617.85 $    617.85 $ 2,471.42 
Exceptional $   7,414.27 $ 1,235.71 $ 1,235.71 $ 4,942.84 
Extraordinary $ 14,828.54 $ 2,471.42 $ 2,471.42 $ 9,885.69 

Note. The mathematical model denotes the awards matrix as N, the weights matrix as W, the fraction of funds matrix as P, 
and the payout matrix as O. Given this scenario, in the mathematical model parlance  NT = 330, PT = 0.116774892,  fT = $ 
2,000,000,  and fA = $ 17,126,969.42. 

 
The model was developed with two constraints to ensure the fairness of the system. The 

first constraint is that the payments be the same if the weights are the same. In the example the 
weights for the advising and service evaluation areas were the same. In order to reflect their 
equal importance it is paramount that the payouts be the same for all three performance levels for 
these two evaluation areas. It can be seen from the payout matrix that this is the case thus the 
model does ensure compliance with the first constraint.   

It can be seen from the payout matrix that across all three performance categories, 
regardless of the evaluation area, the dollar amount of the award is in the ratio of the weights 
assigned to the performance categories of two (excellent), four (exceptional) and eight 
(extraordinary). Likewise, for the four evaluation areas, regardless of the performance category, 
the payout is in the ratio of the weights assigned of: six for teaching, four for scholarship, and 
one each for advising as well as service. This meets the requirement of the second constraint that 
if the weight for one category is higher than another category then the amount of the award for 
the higher weighted category be no less than the award for the lower weighted category.  
 

THE MATHEMATICAL MODEL 
 

In this model, we seek a 3 × 4 matrix P such that the ijth entry of P gives the fraction of 
total funds available allocated to the ith 

performance criterion of the jth 
evaluation area. In this 
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case, i = 1, 2, 3, where 1 represents excellent, 2 represents exceptional, and 3 represents 
extraordinary. The evaluation areas are j = 1, 2, 3, 4 where 1 represents teaching, 2 represents 
advising, 3 represents service, and 4 represents scholarship. Each performance criterion and 
evaluation area is weighted by the elements from a matrix W of the normalized weights of the 
performance criteria and the evaluation areas. The independent variable is the number of awards, 
or population, in each performance criterion of each evaluation area, given by the elements of the 
matrix N. 

Now, consider the matrix P, whose elements are:            
                                                                                                           (1) 

where  = the population in each performance criterion, i, of each evaluation area, j, 
          NT  =  is the total aggregate population over all categories, and 
           = the weight for the ith performance criterion of the jth evaluation area.  
 

DERIVATION OF W  
 

We can consider W to be the matrix product of two vectors, i and j where i is the 
column vector of normalized weights of performance criteria. Thus, if we have weights of two, 
three, and four: 

i =                                                                                                                   (2) 

For example,  is the weight of the excellent performance criterion divided by the sum 
of the weights of all performance criteria, or 2/9 in this case.  

Similarly, j is the row vector of normalized weights of the evaluation areas. Thus, if we 
have weights of 10, four, three, and three: 

j =                                                                                                        (3) 

For example,  is the weight of the teaching evaluation area divided by the sum of the 
weights of all the evaluation areas, or 10/20 in this case.  

Thus, W = i j. 
 

MODEL CONSTRAINTS 
 

To ensure the fairness of the model, it is necessary to impose two constraints. First, if the  
 evaluation weights are the same then the payouts must be the same. Second, if the evaluation 
weight in one area is greater than that for any other area then the payout for the higher weighted 
area cannot be less than that with the lower weight. 

The model must satisfy the following constraints: 
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1. If the weights for any evaluation areas are the same then the payouts to each member 
of the population in those evaluation areas must be the same. That is, if wia = wib for some a ≠ b 
and for all i, then    for all i.  

2. If the weight for one evaluation area is greater than that of another evaluation area, the 
payout to each member of the higher weighted evaluation area must not be lower than the payout 
to each member of the lower weighted evaluation area. That is, if wia ≥ wib for some a ≠ b and for 
all i, then    for all i.  

First, we check constraint 1. Take a and b such that wia = wib for all i. From the definition 
of the model, this implies that  

                                                                                               (4) 

for all i. Thus, the first constraint is satisfied for all wi j.  
Next, we check constraint 2. Take a and b such that wia > wib for all i. Then 

                                                                                               (5) 

Thus, the second constraint is satisfied for all wi j. In fact, a stronger condition is also met. 
That is, having an evaluation area a weighted higher than another area b means that the payout to 
each member of the population of nia is greater than the payout to each member of the 
population of nib. 
 

DETERMINATION OF PAYOUTS 
 

Unfortunately, it is not possible to multiply matrix P by the total amount of funds 
available in order to determine the funds allocated to each category, because  with  
equality only in the case of i = j = 1. For example, take ni j = a , for a a positive constant. That is, 
assume that the population of each category is the same. Further, assume that i has in elements 
and j has jn elements. Then  

(6) 

Since each ni j = a and  NT = in jna, substituting both of these expressions into the above 
equation gives 

                                                                                 (7) 

Because in jn is a constant, it can be taken out of the summation. This gives  
                                                                           (8) 

By definition, each wij is equal to the product of the ith component of i (denoted ) and 
the jth 

component of j  (similarly denoted ). Thus,  

                                                               (9) 
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As does not depend on j, it can be taken out of the inside summation. This gives  
                                                       (10) 

But i and j are normalized, so  
                                                                                       (11) 

Therefore, in this case, we get  
                                                        (12) 

Since in and jn are positive integers, this equation is less than or equal to 1. It can be 
shown that the sum of the entries of the matrix P is always less than or equal to 1 (see the 
appendix). Thus, there is an easy solution to determine the payout for each member.  

Let PT equal the sum of the entries of the matrix P. That is, let  
                                                                                   (13) 

Then, dividing each entry in P by PT, 
                                                                 (14) 

However, the term in the brackets is PT by definition, so this reduces to  
                                                                                             (15) 

Thus, multiplying the matrix P by the scalar   forces the elements of P to sum to 1. 

This matrix can then be multiplied by the total amount of funds available, denoted by fT . Then 
the quantity in each element of the matrix  P is the total amount awarded to that category. 

More simply, since is a scalar, we can think of multiplying P by an adjusted amount of funds, 

denoted fA , where fA =   . Thus, the total amount awarded to each category would be given by 

fAP . To determine how much each member of the population of element ij receives, divide the i 
jth 

element of fAP by the ijth element of N. Thus, each award recipient’s payout for a particular 
evaluation area would be given by the elements of the matrix O 

                                                                                                          (16) 

This model fulfills both constraints and uses all the funds allocated for the PFP awards.  
 

DISCUSSION 
 

It can be seen that the payouts to each faculty member (pij) are independent of the number 
of other faculty who have achieved the same award. This will discourage attempts by faculty to 
concentrate on achieving a high performance level in a sparsely populated evaluation area in an 
attempt to maximize their returns. This follows from the fact that the individual payouts depend 
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only on the weight matrix W and in fact are an exact multiple of the smallest payout in O. The 
multiple is equal to the ratio of the element of wij to wmin, where wmin is the smallest value of W.  
 

CONCLUSION 
 

The proposed model develops a PFP system that satisfies the constraints imposed to 
ensure that the system is fair. The model is flexible enough to allow the performance weights to 
be adjusted to ensure that the amount of the award at each performance level is sufficiently 
differentiated to be perceived to reward the effort required to attain the level of performance 
necessary for the honor.    

Although the weak economy has hindered expectations of any increases (merit or cost-of-
living), and even resulted in hiring freezes or layoffs, it is in these lean times that colleges can 
prepare to implement financial incentives to reward the most productive faculty when the 
economy improves. By developing a plan and creating a model that will support it, future faculty  
development can be maximized.  
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APPENDIX 
Proof 
 

To prove that the sum of the entries of the matrix P is always less than or equal to 1 (that 
is,  ), first consider P to be the Hadamard (element-wise) product of W and a matrix 

, where  . Thus, 

                                                                                                       (A1) 
Now recall that the Frobenius inner product on the space of all matrices is defined as 

                                                                                       (A2) 
Thus, we can write the sum of all the entries in P as the Frobenius inner product of  and  

                                                                (A3) 
The Frobenius inner product admits the Frobenius norm, , defined for real numbers as 

                                                                        (A4) 

Recall the Cauchy-Schwarz inequality, which will be central to our proof, is 
                                                                                         (A5) 

for any inner product and the corresponding norm. Here, we use the Frobenius inner product and 
Frobenius norm. Notice that, in that case, the left-hand side of the Cauchy-Schwarz inequality 
can be written as the sum of all the entries in the matrix ,  as we have already shown 
above. This implies that 

                                                                                (A6) 
In the case of our model, the absolute value is redundant because all entries of  and  

are positive, so the Frobenius inner product must be positive. Thus, we can discard the absolute 
value around the left-hand side. The result is 

                                                                                   (A7) 
Now consider the right-hand side. Since both  and  are matrices in which every 

element is less than one, we can consider just one matrix and generalize our result to the other. 
Hence, without loss of generality, we consider . By definition of the Frobenius norm,  is 

                                                                                          (A8) 

We can show that the values of  sum to 1. Notice that the ijth element of  can be 
written  Thus, the sum of all the elements of  can be written 

                                                                                                (A9) 
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where m is the number of elements in  and n is the number of elements in . But  does not 
depend on j, so we can take it out of the first summation. The resulting equation is 

                                                                    (A10) 

The equalities follow because  and  are normalized, and therefore their elements sum 
to 1. Therefore 

                                                            (A11) 

Squaring both sides gives 
                                                                                       (A12) 

Now let us order the elements of  so that  is the kth element of , where 
, and where, as before, m is the number of elements in . Let  denote the 

sum of all the elements of  except for the kth. Then we can write the above expression as 
                                  (A13) 

where p is the number of elements in . 
Since all of the elements of  are positive, each term  is positive. Therefore 

    (A14) 
In fact, the two sides of this expression are only equal if all but one of the  are 0, in 

other words,  has only one element. The above equation implies that 
                                                                                  (A15) 

Recalling the definition of  we can see that this is equivalent to 
                                                                                                  (A16) 

Taking the (positive) square root of both sides gives 
                                                                                               (A17) 

Recall that the Frobenius norm of  is defined as the left-hand side of the above equation. 
Therefore, 

                                                                                                        (A18) 
A similar argument suffices to demonstrate that 

                                                                                                        (A19) 
Therefore, by the Cauchy-Schwarz inequality 

                                                       (A20) 
Thus, we prove that the sum of  is less than or equal to 1. In addition, if there is more 

than one element in  a strict inequality holds. Therefore the sum of the elements of  cannot 
possibly be 1 unless ; that is, there is only one element in . 
 


