
A Markov model to estimate mortality due to HIV/AIDS using CD4 cell
counts based states and viral load: a principal component analysis approach.

Delson Chikobvu, Claris Shoko*

Department of Mathematical Statistics and Actuarial Sciences, University of the Free State, Box 339, Bloemfontein
(9300), South Africa

Abstract

Background: Improvement of health in HIV/AIDS patients on Highly Active Antiretroviral Therapy
(HAART) is characterised by an increase in CD4 cell counts and a decrease in viral load to undetectable
levels. In modelling HIV/AIDS progression in patients, researchers mostly deal with either viral load
only or CD4 cell counts only as they expect these two variables to be collinear.
Methods: In this study, a cohort of 320 HIV/AIDS patients under HAART follow-up from a wellness
clinic in Bela-Bela, South Africa is used. A time homogeneous Markov model is developed to explain and
predict probability of death from HIV/AIDS. Principal component variables are created by fitting a
regression model of viral load on CD4 cell counts.
Results: Inclusion of a viral load principal component improves the efficiency of the model. The new
viral load covariate helps to explain the component of mortality/transition, which could not be explained
by the CD4 cell counts alone. CD4 cell counts are categorised to define the states for the Markov model.
Results show that the expected percentage prevalence gives almost a perfect fit of the observed data.
Conclusion: The orthogonal viral load covariate along with CD4 baseline, gender, non-adherence to
treatment and age in years (y) variables play a significant role in modelling HIV/AIDS progression
based on both CD4 cell counts and viral load monitoring.
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Introduction
The development of Highly Active Antiretroviral Therapy
(HAART) has substantially reduced the death rate from HIV
[1]. HAART reduces viral load of circulating HIV by blocking
replication at multiple points in the virus life cycle [2] resulting
in an increase in CD4 cell counts and increased life expectancy
of individuals infected with HIV. This has made CD4 cell
counts and viral load counts the fundamental laboratory
markers regularly used for patient management [3] in addition
to predicting HIV/AIDS disease progression or treatment
outcomes [4].

However, although the primary predictor of HIV transmission
is the HIV viral load, very few HIV modelling studies include
a detailed description of the dynamics of HIV viral load along
stages of HIV diseases progression [5,6]. This could be due to
the unavailability of data on viral load, particularly from low
and middle income countries that have historically relied on
monitoring CD4 cell counts for patients on HAART because of
higher costs of viral load testing [7]. However, sometimes both
CD4 cell counts and viral load information is available.

Estill et al. [8] investigated the benefits of viral load count
routine monitoring for reducing HIV transmission. They
developed a stochastic mathematical model representing 1000
simulations for both CD4 and viral load routine monitoring.
Their findings revealed that viral load routine monitoring
reduces both cohort viral load and transmissions by 31%.

Goshu et al. [9] used a semi-Markov process to model the
progression of HIV/AIDS. They used five CD4 cell counts
classified states. They found out that transition probabilities
from a given state to the next worse state increase with time,
get to an optimum level at a given time and then decrease with
increasing time. In a recent research Osisiogu et al. [10] also
used the same states as Goshu et al. [9]. However, they used a
non-stationary Markov chain approach. They examined a
cohort from Nnamdi Azikiwe University Teaching Hospital
with a follow-up in their CD4 cell counts of the HIV/AIDS
patients. Their main finding was that low CD4 cell counts do
not generally imply faster rates of patient absorption but rather
the age of the patient is a relevant factor.

Lee et al. [11] investigated the most vulnerable racial minority
races (African Americans) in the United States and the
Caucasians in order to predict the trends of the HIV/AIDS
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epidemic using a Markov chain analysis. They predicted from
these races, the number of people living with HIV, and
mortality count due to HIV/AIDS. They observed a stable
number of deaths over the years in both races.

Gover et al. [12] assessed the effects of antiretroviral therapy
on 580 AIDS patients from an ART centre in New Delhi. They
used a 5-stage multistate Markov model to estimate transition
intensities and transition probabilities. The states of their
model were CD4 cell count based as follows; state 1 (>500),
state 2 (351 to 500), state 3 (200 to 350), state 4 (<200) and
state 5 (death). They further examined the effects of covariates;
age, gender and mode of transmission on transition intensities
using Cox proportional hazards model.

Shoko et al. [13] used a continuous time-homogeneous Markov
model to analyse the effects of reaction to treatment, TB co-
infection, age and gender on transmission intensities. Their
model was CD4 cell counts based followed by the death state
and withdrawal state.

In this study, a continuous time homogeneous Markov process
is used to model the progression of HIV/AIDS patients. We
classify the states by the level of sickness based on four CD4
cell counts classifications measured in cells/mm3 followed by
the end point, death. More importantly, among the
determinants of HIV/AIDS, both the viral load counts and CD4
cell counts are included in the same model, thus making this
research different from previous studies. The viral load count
covariate was included and effects of collinearity with CD4
cell count are corrected using the principal component
approach. In addition to that, effects of non-adherence to
treatment on transition intensities are assessed. Transitions
between the CD4 cell counts states is considered to be bi-
direction using data recorded from a cohort of 320 HIV+
patients at a wellness clinic in Bela Bela, South Africa.

Continuous-time Markov processes
A stochastic process {X(t),t ϵ [0, ∞)} defined on a finite state
space C={1,2,…,c} where X (t) represents the disease state of
a patient at time t represents a Markov process if ∀�, � ≥ 0 and
for every i, j ϵ C.

P(X(t+s)= j|X(t)=i,X(u)=x(u),0 ≤ u <s)=P(X(t+s)=j|X(t)=i).

Implying that a Markov process is memory less, that is, the
future transitions depend on the entire history only through the
present state. Thus, the previous states once occupied by an
individual do not matter. These transitions are described using
the transition probabilities (pij (t)), transition intensities (qij),
from state i to state j. The functions pij (t) are continuously
differentiable and are subject to the initial condition:��� 0 = ��� = 1,   ��   � = �0,   ��   � ≠ �
Where δij is a kronecker delta, pij (0)=1, i=j means the patient’s
state definitely does not change when no time elapses and pij
(0)=0, i ≠ j means that when no time elapses we are sure that

the patient’s state cannot change with certainty. The transition
intensity is defined as;

��� � = � ��� ��� � = 0 = lim� 0��� �, �+ �� ,   �, � ∈ �,   � ≠ �
and ��� � = − ∑� ≠ ���� �  for each i ϵ C. In this study,
transition probabilities depend only on the elapsed time and not
on the chronological time. Thus, the Markov process is time-
homogeneous, implying that

pij (t, t+s)=pij (s) and qij (t)=qij

The effect of the above explanatory variables (covariates) on
the transition intensities is modelled using the proportional
intensities:��� � = ���0 exp ���′ � ,   � ≠ � 1
Where Z is a k-dimensional vector of explanatory variables, βij
is a vector of k regression parameters relating the instantaneous
rate of transitions from state i to state j to the covariates Z, and
qij

(0) is the baseline transition intensities with covariates set to
their means.

Materials and Methods

Data description
The model is initially applied on 320 HIV positive patients on
Highly Active Anti-Retroviral Therapy (HAART) from a
Wellness clinic in Bela Bela, South Africa, from year 2005 to
year 2009. 224 of these patients were females and 96 were
males at treatment commencement (t=0). About 50% and 65%
of the female and male deaths respectively occurred during the
first 6 months of treatment uptake. The interquartile range of
patient ages is (33 y; 48 y) with mean and median ages of
40.62 y and 41 y respectively. The ages were negatively
skewed (skew=-0.08) since there were younger patients than
older patients in this cohort. At time (t=0) there were 242
individuals with CD4 baseline (CD4BL) cell counts below
200, 59 individuals with CD4 cell counts between 200 and 350,
11 individuals with CD4 cell counts between 350 and 500, 6
individuals with CD4 cell counts between 500 and 750 and 1
individual with CD4 cell count above 750. At (t=0) the CD4
cell counts had mean of 156 cells/mm3, a median of 116
cell/mm3 and the maximum CD4 cell counts was 1202
cells/mm3. The mean Viral Load Count Baseline (VLBL) for
these patients was 105573.35 copies/mm3 and it ranged from
56 to 818600 copies/mm3. The median viral load was 58523.00
copies/mm3. From these individuals 155 had a WHO stage
baseline (WSBL) of 4 which is related to severe HIV
symptoms. WSBL is the categorisation of HIV/AIDS at
baseline basing on the clinical markers as defined by World
Health Organisation (WHO).
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Statistical analysis
Principal component analysis: Principal component analysis
is a technique used to combine highly correlated factors into
principal components that are much less correlated with each
other. This improves the efficiency of the model.

In this study, the predictive power of CD4 cell counts (I1) and
viral load (I2) is explored. Two new, uncorrelated factors, I1

*

and I2
*, can be constructed as follows:

Let I1
*=I1

Then, we carry out a linear regression analysis to determine the
parameters γ1 and γ2 in the equation:�2 = �1+ �2�1* + �1
γ1 and γ2 are the intercept and slope parameters of the
regression model respectively and ε1 is the ‘error’ term or
residual, which by definition is independent of I1

*=I1.

We then set:�2* = �1 = �2− �1+ �2�1*
By construction I2

* is uncorrelated with the viral load values
(I2) since I2

*=ε1 is the residual term in the equation. I2
* in the

model explains the component of mortality that cannot be
explained by the CD4 cell counts alone (or in the absence of
viral load counts). To deal with multi-collinearity of viral load
count and CD4 cell count, the orthogonal viral load covariate
(residuals) are used. This is done by regressing viral load count
on CD4 cell count and doing the classification below. The
residuals from the fitted model are included with the original
HIV data to form the new orthogonal covariate, orthogonal
viral load (residuals) (VLR). These residuals are coded as; “1”
for negative residuals and “0” for positive residuals. A
continuous-time Markov model for the effects of age, non-
adherence (NA), CD4 baseline (CD4BL), and orthogonal viral
load (I2

*) on HIV progression based on CD4 cell counts is
fitted using the “msm” package for multistate modelling in R.
The results are presented in the next section.

The variables in the model are then defined as follows:��� = 1,   ≤ 45   �����0,   > 45   �����,������ℎ������var�����(�2*) = 1,   ��������0,   �������� .��� − ��ℎ������  �� = 1,   ���0,�� ,
������ = 1,   ����0,   ������,
��4 ��������  ��4� = 1,   ≤ 200   �����/��30,   > 200   ����/��3 ,

��4 ���� ����� ������ (�) =
1;   ��4 > 8002; 500 < ��4 ≤ 8003; 350 < ��4 ≤ 5004;   ��4 < 3505;   ����ℎ

,
Model formulation
Consider a stochastic process {X(t), t ϵ [0,5) years} defined on
a finite state space C=(1,2,3,4,5) based on CD4 cell counts as
defined above. X (t) represents the CD4 state of an HIV/AIDS
patient at time t. This process represents a Markov process if∀�, � ≥ 0 and for every i, j ϵ C.

P(X(t+s)= j|X(t)=i,X(u)=x(u),0 ≤ u <s)=P(X(t+s)=j|X(t)=i).

The above equation implies that a Markov process is memory
less, that is, the future transitions depend on the entire history
only through the present state. Formulation of the model is
based on the assumption that at (t=0), an HIV infected
individual enters the study with an HIV state defined by CD4
cell counts levels. As the patient initiates treatment therapy, the
patient is either in states 1-3 or 4 and these states are mutually
exclusive. At time ∆t the patient in state i is expected to either
maintain his state (i=1,2,3,4), transition to state of better CD4
cell counts (i-1, I ≠ 1) (or remain at the lowest state) or transit
to a state of lower CD4 cell counts (i+1, i=1,2,3,4) (or remain
at the highest state). These possible transitions are based on the
assumption that not all patients initiated into HAART recover
their CD4 cell counts levels. Some may fail to achieve their
normal CD4 cell counts levels due to non-adherence, effect of
age as younger patients may not adhere and also due to the
effect of gender since the assumption is males have busy
schedules. However, those who adhere to HAART respond
well to treatment. Hence the bi-directional model proposed in
Figure 1 below.

Figure 1. Diagraph for HIV progression defined by CD4 cell count
states followed by the end point, death. a) States 1-4 are transient and
there is a possibility of marinating the same state in 2 or more
consecutive visits. b) State 5 is the absorbing state.

The model in Figure 1 is described by a transition intensity
matrix Q=qij;

� � =
�11 �12 0 0 �15�21 �22 �23 0 �250 �32 �33 �34 �350 0 �43 �44 �450 0 0 0 0
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The effect of the above explanatory variables on the transition
intensities is modelled using the proportional intensities:��� � = ���0 exp ���′ � ,   � ≠ �,
Where Z is a k=5-dimensional vector of explanatory variables
“CD4BL, gender, age, non-adherence (NA), orthogonal viral
load (“I2

*”).” Thus, the transition intensity for a patient h in
this study is given by the model:

��� = ���0 exp ������ ���ℎ+ ��������� ������ℎ
+ �����4�� ��4��ℎ+ ����� ��ℎ+ ����2*)  �2*ℎ
For this model qij

(0) are the baseline transition intensities that
refer to a patient with age category 0 (over 45-y-old), gender=0
(female), CD4BL=0 (above 200 cells/mm3, Adherent to
treatment and positive I2

*, βij is a regression parameter relating
the instantaneous rate of transitions from state i to state j to the
covariate Z. The transition intensities, qij, are presented in rates
per year. qij are the elements of a 5 × 5 transition intensity
matrix Q from a continuous time-homogeneous Markov
process.

An important aspect is the inclusion of both CD4BLh and I2
*

(the orthogonal viral load covariate) derived after curing for
collinearity.

Assessment of the fitted models: Based on Equation (1) two
nested models are fitted, one of the models excludes the effect
of the orthogonal viral load and the other includes all
covariates including the orthogonal viral load. These models
are compared using their Akaike information criteria (AICs)
defined as:

AIC=-2 × Log (likelihood)+2k

where -2 × Log (likelihood) represents the bias, 2k represents
the variance and k is the number of estimated parameters in the
fitted model. The model with the minimum AIC is considered
as the better model. Further assessment of the fitted nested
models is done using the likelihood ratio test (LRT). The value
of the LRT=-2loge ((Ls (θ))/(Lf θ)), where Ls (θ ̂) is the simple
model (no viral load orthogonal in the model) and Lf (θ ̂) is the
full model (with the orthogonal viral load covariate in the
model).

Results
In this section, the combination effect of viral load and CD4
cell counts in the progression of HIV in patients on treatment is

analysed. This is done by first fitting a time-homogeneous
Markov model for the effects of the covariates; CD4 cell count
baseline (CD4BL), Gender, Age and non-adherence to
treatment (NA) on HIV/AIDS progression based on CD4 cell
count states. Notable is the exclusion of the viral load count
covariate in this model. Secondly, a time-homogeneous
Markov model for the effects of covariates; CD4 cell count
baseline (CD4BL), gender, age, non-adherence to treatment
(NA) and the orthogonal viral load covariate is then included in
the model. Comparison of these two models is based on their
-2 × log (likelihood), Akaike Information Criteria (AIC),
likelihood ratio tests and also the percentage prevalence plots.
The results are shown in the following subsections.

CD4 cell counts model and other variables excluding viral
load: In this subsection we fit a continuous-time homogeneous
Markov model for the effects of non-adherence (NA), CD4
baseline (CD4BL), age and gender on the progression of HIV
defined by the CD4 cell counts states as defined in the model
below:��� � = ���0 exp ���′ � ,   � ≠ �,
where Z=(CD4BL, gender, age, NA) is a k=4-dimensional
vector of covariates and βij is a vector of k regression
parameters relating the instantaneous rate of transitions from
state i to state j to the covariates Z and baseline intensities qij

(0)

relating to the baseline transition from state i to state j. These
states are defined by CD4 cell count and an absorbing state,
death. The results are shown in Table 1 below.

From Table 1, the first column represents possible transitions
from state i to state j, where i=1,..,4 and j=1,..,5. The second
column represents the baseline transition intensities (with
confidence intervals), the third column gives coefficients (with
confidence intervals) to represents the effects of non-adherence
to treatment, the fourth column gives coefficients (with
confidence intervals) to represent the effects of having a CD4
baseline above 200 copies/mm3 to HIV progression, the fifth
column gives coefficients (with confidence intervals) to
represent the effects of having age below 45 years and lastly
the sixth column gives coefficients (with confidence intervals)
to represent the effects of gender to HIV progression. The
results are as follows:

Table 1. Estimated parameters (with 95% confidence intervals in brackets) for the time homogeneous model that excludes the effects of viral loads.

State i-j Baseline (qij
(0)) NA CD4BL Age Gender

State 2-1 0.561 (0.410, 0.7677)* 0.786 (0.0081, 1.57)* -0.411 (-0.938, 0.116) 0.37 (-0.51, 1.25) 0.106 (-0.51, 0.72)

State 1-2 0.751 (0.486, 1.159)* 0.145 (-1.29, 1.003) -0.491 (-1.232, 0.25) -1.309 (-2.57, -0.05)* -0.0618 (-0.94, 0.817)
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State 3-2 1.27 (1.048, 1.537)* 0.0501 (-0.74, 0.84) -0.613 (-0.99, -0.23)* 0.277 (-0.15, 0.71) 0.117 (-0.30, 0.54)

State 2-3 0.711 (0.526, 0.964)* 0.757 (-0.42, 1.94) -0.0338 (-0.71, 0.64) 0.188 (-0.92, 0.55) 0.737 (0.084, 1.39)*

State 4-3 0.798 (0.686, 0.929) [8] 0.389 (-0.92, 0.15) -1.329 (-1.67, -0.99)* 0.0508 (-0.277, 0.38) -0.463 (-0.79, -0.13)*

State 3-4 0.691 (0.528, 0.906)* 0.751 (-0.049, 1.55) -0.522 (-1.15, 0.11) 0.0671 (-0.51, 0.65) 0.516 (-1.13, 0.09)

State 1-5 0.0005 (0.000006, 4696) 0.058 (-39.9, 39.75) 0.621 (-42.3, 43.6) -0.607 (-36.1, 34.85) 0.714 (-42.2, 43.6)

State 2-5 0.00492 (0.00007, 0.330)* 1.629 (-14.36, 11.1) 0.0683 (-2.93, 3.07) 3.702 (-9.11, 16.51) 1.509 (-1.48, 4.50)

State 3-5 0.00036 (0.000005, 2.44)* 4.48 (-4.15, 13.11) 2.878 (-8.16, 13.9) 2.39 (-9.12, 13.90) -3.194 (-14.1, 7.7)

State 4-5 0.0010 (0.00004, 0.276)* 3.35 (-16.4, 9.67) 3.164 (-9.80, 16.1) -2.065 (-4.31, 0.181) -5.271 (-18.3, 7.78)

-2log-likelihood: 2646.165; *significant.

In Table 1 (model that excludes the viral load count), results
from the baseline transition intensities show that patients in
state 1 (CD4 cell counts above 800 cells/mm3) are 1502 times
more likely to experience immune deterioration to state 2 than
being absorbed into the death state. When CD4 cell counts are
below 500 cells/mm3 (states 3 and 4), transitions to better
states are more likely to occur than transitions to worse states.
However, when CD4 cell counts are above 500 cells/mm3 the
rates of immune deterioration are higher than the rates of
immune recovery.

For patients who experienced non-adherence to treatment,
transitions from state 2 to state 1, state 3 to state 4, state 3 to
state 2 and state 4 to state 3 estimates are relatively precise as
shown by the narrower confidence intervals. The only
transition that is significant, is from state 2 to state 1. This is
shown by the confidence interval that is narrower (zero
excluded in the interval) compared to the other transitions. For
these non-adherent patient, there is a significant increase on the
rate of immune recovery from state 2 to state 1. Although not
significant, there is an increase in immune deterioration from
state 3 to state 4 and reduction on the rate of immune recovery
from state 4.

For the age variable, transitions from state 2 to state 3, state 3
to state 2, state 3 to state 4 and state 4 to state 3 estimates are
relatively precise as revealed by the smaller confidence
intervals. The only transition that is significant (zero excluded
in the interval) is from state 2 to state 1. The results show a
significant reduction in immune deterioration once a normal
CD4 cell counts above 800 cell/mm3 (state 1) are achieved for
the younger patients aged 45 years and below. These younger
patients experience reduced immune deterioration from state 2
to state 3 and increased immune deterioration from state 3 to
state 4 although these transitions are not statistically
significant.

For the other variables, gender and CD4 baseline, all the
estimated transitions between live states estimates are
relatively precise since they have narrow confidence intervals.
However, for CD4 baseline, only transitions from state 3 to
state 2 and from state 4 to state 3 are significant (zero excluded
in the interval). These transitions show a significant reduction
in immune deterioration. Males experienced significantly

increased immune deterioration from state 2 to state 3
compared to their female counterparts. They also experience a
significant reduction in immune recovery from state 4 to state
3.

Overall, the fitted model shows relatively wider confidence
intervals for the transitions to the death state.

The expected and observed percentage prevalence in each CD4
cell count state and the death state are shown in Figure 2
below.

Figure 2. Observed and expected percentage prevalence in each state
for the model with CD4 states without viral load orthogonal. The
expected model slightly underestimate motel after 3 years.

Results from Figure 2 show that the expected percentage
prevalence give almost a perfect fit of the observed percentage
prevalence for state 1 and state 5 (death) up to 3 years.
Thereafter deaths are slightly underestimated and state 1
prevalence’s are slightly overestimated. In the first 2 years
observed percentage prevalence in state 2 and 3 are slightly
overestimated by the expected percentage prevalence.
Percentage prevalence in state 4 are slightly underestimated in
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the first 2 years and slightly overestimated thereafter by the
fitted model.

CD4 model for the viral load principal component: since
the variables CD4 cell count and viral load are expected to be
collinear, orthogonality between these variables is achieved by
regressing viral load on CD4 cell count as shown in Table 2
below.

The results show a highly significant regression line suggesting
correlation between viral load and CD4 cell count as indicated
by a p-value below 2.2e-16. The residuals from the regression
model are then taken to represent another viral load covariate,
which is orthogonal to the CD4 cell count covariate. The
orthogonal viral load covariate is coded as follows.���ℎ������   �����   ����   �2*= 1,   ��   �����   ����   ��������   ��   ��������0,   ��   �����   ����   ��������   ��   ��������

The orthogonal viral load covariate and other variables; age,
non-adherence, gender and CD4 baseline are then used as
covariates for the continuous-time Markov model with states
defined by CD4 cell count. The results are shown in Table 3
below.

Table 2. Regression of viral load on CD4 cell counts.

 Estimate Std.
error

t value Pr(>|t|)  

γ1 intercept) 55166.91 3136.54 17.59 <2e-16 ***

γ2 slope -70.963 6.207 -11.43 <2e-16 ***

Multiple R-squared: 0.06015; F-statistic: 130.7 on 1 and 2042 DF, p-
value<2.2e-16

Table 3. Parameter effects (with 95% confidence intervals) of age, CD4 baseline, non-adherence, gender and viral load residuals on the transition
intensities for the CD4 based Markov model.

 Baseline NA CD4BL Age Gender I2*

State 2-1 0.545 (0.40, 0.74) 0.765 (0.034,1.496)* -0.28255 (-0.78,0.21) 0.61259 (-0.146,1.37) -0.03339 (-0.6273, 0.5605) -1.17330 (-1.9536,-0.39301)*

State 1- 2 0.0401 (0.00004,
4242)

0.1483 (-1.11922,
1.4159)

-0.51969 (-1.3044,
0.26501)

-1.32263 (-2.6596,
0.01434)

-0.08131 (-1.0383, 0.8757) -4.01482
(-18.5900,10.56033)

State 3- 2 1.398 (1.135,
1.722)

0.3269
(-0.60065,1.2544)

-0.54526
(-0.9359,-0.15463)*

0.30917 (-0.1229,
0.74129)

0.16951 (-0.2711, 0.6101) -0.50199 (-1.0694, 0.06537)

State 2-3 0.669 (0.474,
0.943)

1.1211 (-0.19695,
2.4392)

0.03985 (-0.6460,
0.72567)

-0.08423 (-0.8219,
0.65347)

0.87997 (0.2023, 1.5577)* 0.70471 (-0.4375, 1.84694)

State 4-3 0.831 (0.710,
0.973)

-0.3759
(-0.94136,0.1896)

-1.40333
(-1.7733,-1.03333)*

0.05320 (-0.2799,
0.38628)

-0.48246 (-0.8212,-0.1437)* -0.07262 (-0.4884, 0.34321)

State 3-4 0.697 (0.478,
1.018)

0.8527 (0.01718,
1.6883)*

-0.61048 (-1.2898,
0.06881)

0.10324 (-0.4845,
0.69097)

-0.50671 (-1.1252, 0.1118) 0.24935 (-1.3065, 1.80515)

State 1-5 0.00166 (0.00001,
17.1)

4.3732
(-1.99613,10.7425)

7.38286
(-9.1511,23.91685)

2.64846
(-14.0315,19.32845)

-2.76023
(-21.6692,16.1487)

7.96834 (-8.9552,24.89188)

State 2-5 0.0001 (0.00003,
131)

-1.7120
(-28.32334,24.8994)

-2.54389
(-18.2331,13.14536)

2.06138
(-15.1219,19.24463)

4.65693 (-8.0486,17.3625) -5.06520 (-17.1554, 7.02498)

State 3-5 0.0001 (0.00003,
2768)

1.7018
(-36.23359,39.6373)

1.06855
(-45.1581,47.29522)

0.37856
(-48.2596,49.01677)

-1.37134
(-48.1259,45.3832)

-1.09413
(-55.9253,53.73707)

State 4-5 0.0006 (0.00004,
1.05)

-3.9372
(-22.01985,14.1455)

3.75843
(-13.5309,21.04776)

-2.06766 (-4.3237,
0.18839)

-5.76054 (-22.9616,11.4405) -1.18026 (-2.9828, 0.62225)

-2Log-likelihood: 2554.25; *significant

The results from Table 3 (model that includes the viral load
count) show that for all the covariates the model gives more
precise estimates (narrower confidence intervals) of parameters
for transitions between live states than the model without the
orthogonal viral load covariate (I2

*). Just like the model
without the orthogonal viral load, non-adherent patients
experienced a significant increase in immune recovery from
state 2 to state 1. In addition, there is a significant increase in
immune deterioration from state 3 to state 4. Although not
significant, the inclusion of the orthogonal viral load covariate
results in non-adherence to treatment accelerating death from

state 3 although the magnitude is lower than when the
orthogonal viral load covariate is excluded.

The covariate age results in a more precise estimate of the
transition from state 4 to state 5 compared to the other
covariates except the orthogonal viral load. The results reveal a
reduction of deaths from state 4 for patients aged 45 y and
below. Though not significant, the results now show a
reduction on immune deterioration from state 1 (CD4 state
above 800 cells/mm3) and an increase on the rate of immune
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recovery from state 2 to state 1 for younger patients aged 45 y
and below.

The results generally show a reduction in mortality in cases
where the observed viral load is lower than the expected (i.e.,
negative orthogonal viral load count).

For patients who initiated therapy with a CD4 cell counts
below 200 cells/mm3, the rates of immune recovery are
reduced. There is a significant reduction in the rates of immune
recovery from state 3 to state 2 and from state 4 to state 3.

The continuous-time homogeneous Markov model with the
orthogonal viral load component has lower -2log-likelihood
than that of the model that excludes the orthogonal viral load
component. Next we plot percentage prevalence in each state
for the fitted model.

Figure 3. Percentage prevalence for the continuous-time Markov
model defined by CD4 cell count and the orthogonal variable, viral
load, included. It shows an improvement in estimating mortality
compared to the model without the orthogonal variable.

Figure 3 above shows that if the orthogonal viral load covariate
is included, the expected percentage prevalence gives a better
estimate of the observed percentage prevalence for the
mortality state (state 5), better than the Markov model in which
the orthogonal viral load covariate is excluded.

Assessment of the fitted models: In this section we further
assess the fitted models by performing a likelihood ratio test
and calculation of the Akaike Information Criteria (AIC) for
each of the fitted model (Table 4).

Table 4. Likelihood ratio test for the model with no viral load
orthogonal and the model with viral load orthogonal.

lrtest.msm (No orthogonal viral load
covariate, with the orthogonal viral
load covariate)

-2loLR df p

with viral load orthogonal 91.91497 10 2.22E-15

AIC (No viral load orthogonal)=2746.165; AIC (with viral load
orthogonal)=2674.25

A likelihood ratio test for the two nested models has shown
that the model with the orthogonal viral load covariate fits the
data significantly better than the model with no orthogonal
viral load covariate. This is further confirmed by the estimated
AICs which is lower for the model with the orthogonal viral
load covariate than that of the model with no orthogonal viral
load covariate.

Discussions
In this study, a time homogeneous Markov model based on
CD4 cell count states is developed to explain and predict
probability of death from HIV/AIDS. The model is improved
by including an orthogonal viral load covariate derived from
principal component analysis. Principal component analysis is
a technique used to combine highly correlated factors into
principal components that are much less correlated with each
other. This improves the efficiency of the model. Principal
component variables are created by fitting a regression model
of viral load count on CD4 cell count. The new orthogonal
covariate is included to represent the viral load covariate for
the Markov model defined. This viral load covariate helped to
explain a component of mortality/transition, which could not
be explained by the CD4 cell count alone.

Results from the likelihood ratio test show that the model with
the orthogonal viral load covariate fits significantly better than
the model with exclusion of viral load. Thus, the orthogonal
viral load covariate along with CD4 baseline, gender, non-
adherence and age play a significant role in modelling HIV/
AIDS progression based on CD4 cell counts and viral load
monitoring.

Results from the analysis show that when CD4 cell count is
below 500 cells/mm3 rates of immune recovery are higher than
rates of immune deterioration particularly for younger patients
aged 45 y and below. However, when the CD4 cell counts are
between 500 and 800 cells/mm3 the rate of immune
deterioration is higher than the rate of immune recovery and
this was mainly attributed to patients who were non-adherent
to treatment and patients who initiated therapy with a CD4
baseline below 200 cell/mm3. Once the CD4 cell count is
above 800 cells/mm3, the results show a possibility of immune
deterioration, although the magnitude is very low, mainly due
to non-adherent to treatment. This contradicts the finding from
the previous study that was carried out in India which revealed
higher rates of immune recovery than immune deterioration
regardless of the HIV/AIDS state of the patient [12].

Progression to death is more pronounced on HIV/AIDS
patients who are below the age of 45 y and with a CD4 cell
count of 200 cells/mm3 at treatment initiation. Previous studies
[12,13] also reported more pronounced risk of death for
patients with CD4 baseline of 200 cells/mm3 which concurs
with our findings. For this study, progression to death was also
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more pronounced from the CD4 cell count above 800
cells/mm3 for patients whose CD4 baseline was below 200
cells/mm3 and for patients who were non-adherent to
treatment.

The results show that inclusion of the orthogonal viral load
covariate results in a reduction in immune deterioration from
state 1 (CD4 state above 800 cells/mm3) and an increase in the
rate of immune recovery from state 2 to state 1 for younger
patients aged 45 y and below. Generally younger patients
experienced higher rates of immune recovery than immune
deterioration compared to patients who are over 45 y and this
concurs with findings from previous studies [14]. This is in
agreement with previous study carried out in Tehran, India that
showed that mean CD4 cell count increments after initiation of
combination therapy are lower on older patients [15].

For patients whose viral load is lower than the expected given
the CD4 cell count, there was a reduction in transition to
deaths. This means that for given levels of CD4 cell count, the
patients ought to have more viral load, but they have less
resulting in reduction in mortality.

This study discovers the importance of using both CD4 cell
count and viral load in the same model for monitoring
progression of HIV/AIDS patients on antiretroviral therapy. By
including both variables, the model has revealed that for given
levels of CD4 cell count, there is the possibility of reduction of
mortality for patients whose viral load is lower than expected
given their CD4 count. Progression to death was more
pronounced on patients who have achieved normal CD4 cell
counts and this is experienced mainly in younger patients, non-
adherent patients and also for patients whose initial CD4 cell
counts were below 200 cells/mm3. This study will help the
researcher to uncover the critical areas of dealing and
correcting for collinearity when including both CD4 cell count
and viral load in multistate modelling of HIV/AIDS that many
researchers were not able to explore. Thus a new application of
theory and better understanding of the Principal component
approach when dealing with both CD4 and viral load (in the
same model) to HIV/AIDS modelling may be arrived at.
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