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Abstract

Because the SARS-CoV-2 (COVID-19) pandemic viral outbreaks will likely continue until effective
vaccines are widely administered, new capabilities to accurately predict incidence rates by location
and time to know in advance the disease burden and specific needs for any given population are
valuable to minimize morbidity and mortality. In this study, a random forest of 9,250 regression trees
was applied to 6,941 observations of 13 statistically significant independent predictor variables
targeting SARS-CoV-2 incidence rates per 100,000 across 88 days in 157 countries. One key finding is
an algorithm that can predict the incidence rate per day of a SARS-CoV-2 epidemic cycle with a
pseudo-R2 accuracy of 98.5% and explains 97.4% of the variances. Another key finding is the relative
importance of 13 demographic, economic, environmental, and public health modulators to the SARS-
CoV-2 incidence rate. Four factors proposed in earlier research as potential modulators have no
statistically significant relationship with incidence rates. These findings give leaders new capabilities
for improved capacity planning and targeting stay-at-home interventions and prioritizing
programming by knowing the atypical social determinants that are the root causes of SARS-CoV-2
incidence variance. This work also proves that machine learning can accurately and quickly explain
disease dynamics for zoonoses with pandemic potential.
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Introduction
This section discusses what was known and unknown on this
topic, and the resulting hypothesis. This introduction also puts
the importance of using machine learning to identify models of
viral infection modulators holistically and quickly into context
during an era of increasingly pandemic zoonoses and their
continuation until vaccines availability [1].

While it has been long believed that respiratory viral incidence
rates vary by season, the first impression that humidity and
temperature were the root-cause modulators has been widely
assumed but is still uncertain [2]. Other studies have indicated
with more certainty that respiratory viruses are modulated by
humidity, temperature, and precipitation. Studies have also
found that seasonal viral modulators of incidence may relate to
oscillations in human hosts of pathogens [3].

Similarly, it is understood that vaccination rates impact
complex models of infectious disease incidence rates [4].
However, for new zoonoses, it is usually unknown which
vaccinations for other diseases are protective or increase risks
against the new pathogen.

Malnourishment and obesity have been previously found to be
associated with risk factors of higher susceptibility to
respiratory viruses [5]. Obesity has also been found to be a
morbidity and mortality risk for SARS-CoV-2, but not an
infection risk factor [6].

Finally, early SARS-CoV-2 researchers observed frequency
correlations with ABO blood-type groups, specifically typos O
for protective qualities and types A for risks [7]. However, this

result has not, before now, been generalized across time and
locations.

What has been unknown for SARS-CoV-2, and most, if not all,
viruses of pandemic potential, is a method to timely understand
how all these types of variables combine to form a model to
explain incidence rate inequalities statistically. Therefore, this
study hypothesizes that machine learning can use brute-force
statistical calculations to identify which factors have
statistically significant associations with changes in incidence
rates during a pandemic and combine and quantify them into a
useful model.

Methods
In this study, machine learning--a robust statistical version of
artificial intelligence--was applied to a data set of 6,941
observations to identify the relative importance of 13
demographic, economic, environmental, and public health
factors in modulating the incidence rate per 100,000 population
of SARS-CoV-2 across 88 days in 157 countries. The data was
sourced from the public domain, such as the World Bank and
United Nations, select journal articles, and weather stations [8].
The period of the epidemic curve measured began the day after
cases in a country began to grow until case growth stopped or
the 88-day period expired between January 23 and April 18,
2020.

Specifically, Rattle library (version 5.3.0; Togaware) in the
programming language R (version 3.6.2, CRAN) was used to
apply generalized linear models (GLM) to learn the p-values of
each term relative to incidence rate, the targeted dependent
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Figure 1. Fit of predicted vs. observed linear fit of SARS-CoV-2
incidence rate per 100,000 and pseudo-R2 of 15% validation hold-
back data set (top) and 15% of test hold-back data set (bottom).

The relative importance of independent predictor variables was
computed by percent increase in mean squared error (Figure 2).
The mean error is the average distance between the predicted
and observed values.

Figure 2. Comparative importance of independent predictors ranked
by percent increase in mean squared error from exclusion.

It is squared to ensure positive values and to weight greater
distances. The percent increase in mean squared error is the
proportional increase in the error of predictions when a
variable is randomly excluded, or muted. For example, when
the number of days since the index case was muted, the mean
squared error increased by 212.4%, making it the most
comparatively significant input predictor. Scores of tests of
statistical significance, Spearman rho correlation strengths and
directions, 95% confidence intervals, and high-level
interpretations are in Figure 3.
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variable. From which five terms believed to be potential 
modulators of incidence rate were excluded because of p-
values in excess of 0.05: maximum ultraviolet (UV) index (p-
value=0.348), minimum temperature (p-value=0.896), 
humidity (p-value=0.956), dengue fever incidence rate (p-
value=0.131), and median age (p-value=0.062) [9,10]. Where 
after, a series of differently sized random forest algorithms 
were applied, ranging from 500 to 10,000 regression trees, to 
learn the optimum number of regression trees to minimize 
error. The lowest error rate was approximately 9,250 regression 
trees, which was applied, using four variables at a time, which 
was the closest whole number to the square root of the number 
of predictors.

The algorithm randomly partitioned the data to select and train 
on 70% (n=4858), validate on 15% (1041), and test on 15%
(1041) of observations. The algorithm also imputed missing 
numbers with the median from each data category. Two 
evaluation methods were used: (1) plots of linear fits of the 
predicted versus observed incidence; and, (2) a pseudo-R2 
measure calculated as the square root of the correlation 
between the predicted and observed values. Results from a 
random forest of 9,250 regression trees were compared against 
results from a single regression tree (with 7 and 20 as the 
minimum and the maximum number of observations per split), 
a GLM, and a neural network model. Pseudo-R2 measure 
results were evaluated twice, each using the validation and 
testing hold-back data sets that were randomly selected during 
partitioning and used the average of the two accuracy findings 
for the results. Minitab 19 (version 19.2020.1, Minitab LLC) 
was used to calculate means, medians, and 95% confidence 
intervals.

Results
Based on the artificial intelligence and statistical analysis, 13 
independent variables, each demonstrating a statistically 
significant relationship with incidence rate by a p-value<0.05, 
explains 97.4% of the variability between incidence rates 
during the growth phase of the SARS-CoV-2 epidemic cycle 
across 88 days in 157 countries. Moreover, the algorithm 
predicts incidence rate per 100,000 with an average pseudo-R2 
accuracy of 98.5% (validation=98.7%, test=98.2%) (Figure 1). 
The mean of squared residuals was 229.7, making the mean 
residual +/- 15.2 per 100,000. The mean incidence rate per 
100,000 was 25.4 (95% CI 23.4 to 27.5), with a standard 
deviation of 86.7 (95% CI 85.3 to 88.2). An Anderson-Darling 
normality test indicated the data does not follow a specific, or 
normal, distribution (p-value<0.005).
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Figure 3. Table of independent predictor variable scores of
probabilities of statistical insignificance, strength of correlation,
confidence intervals, and interpretations.

Discussion
The primary importance of this work is a new capability to
know in advance the order of magnitude of the disease burden
of SARS-CoV-2 for any given population and time in a growth
cycle. This new capability will enable leaders to make more
accurate and precisely targeted decisions regarding public
health interventions to minimize morbidity and mortality. For
example, the incidence rates of those with a high BMI, smoke
tobacco and have ABO blood type A are in three elevated risk
groups for infection [7].

The secondary importance of this work is new knowledge
quantifying the relative importance of the social determinants
that are root causes of incidence variance. This knowledge will
enable leaders to target and prioritize programming more
accurately. It is distinctly crucial because several of the
findings are atypical from historic viral modulators.

For example, to reduce SARS-CoV-2 morbidity and mortality,
leaders may want to prioritize public health interventions
focused on reducing body mass index, smoking, and pediatric
mortality contributors because traditional infectious disease
vulnerability and economic strength have a negative
association with incidence rates [11]. Moreover, humidity and
ultraviolet light exposure, which previous research suggests
modulate the virus, have no statistically significant relationship
with SARS-CoV-2 incidence variances.

The tertiary importance of this report is proof that machine
learning methodologies can accurately and quickly inform our
understanding of zoonoses' disease dynamics with pandemic
potential. For example, by entering dozens of possible
demographic, economic, environmental, and public health
measurements as independent predictors into machine learning
algorithms, they can accurately determine within hours or days
which factors explain inequalities in incidence, prevalence, or
disease transmission. Moreover, the algorithms can also
quantify and ordinally rank the social determinants to the root
causes of variances.

This report has several limitations related to data dependencies
of the model. One, because the current pandemic was seeded
first and most heavily in more developed countries, it may
have contributed to paradoxical findings such as higher
incidence where infectious disease vulnerability is lower, and
economies are more robust. Two, in geographically large
countries, environmental measurements vary widely. Three,
approximately 3,557 (3.7%) of 97,174 data points were

missing and imputed with a median; actual observations may
differ from the categorical medians. Four, the analysis was
conducted mid-pandemic across only 88 days. Findings after
the pandemic across its duration will be more definitive. Five,
because testing availability was scant during the period of
observation, the incidence rates measured probably reflect
more severe cases that were symptomatic and hospitalized for
testing rather than the actual incidence rate. This limitation
could be significant if a large portion of those infected are
asymptomatic but still contagious.

Conclusion
One implication of these findings is the importance of basic
public health behaviors such as weight control and tobacco use,
and the factors that contribute to pediatric survivability (e.g.,
education, nutrition, vaccinations). The second implication of
these findings is that while previous research indicates viruses
are modulated by temperature and humidity, this study found
that these factors may only nominally slow the transmission of
more contagious viruses. A third implication of these findings
is that the causes of disease incidence variances are complex
and sometimes surprising. A fourth and final implication of
these findings is that the usefulness of machine learning as a
public health tool is encouraging.
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