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Abstract 

Drug synergy is a critical area in the field of medicine. The correct drug-drug combination is highly 

needed to cure the life threatening diseases like blood cancer, lung cancer, throat cancer, etc. Drug 

synergy can be predicted with the help of machine learning models. In this paper, the comprehensive 

review on the recently proposed drug synergy techniques has been presented. The comparison between 

various machine learning based drug synergy prediction techniques has also been presented. The 

overall objective is to evaluate the various shortcomings in machine learning based drug synergy 

prediction techniques and to draw suitable future directions. 
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Introduction 

In the quest for clinical efficacy, drug combinations are a 

promising strategy in cancer treatment. Targeting a signaling 

pathway at one step may not be sufficient for reaching maximal 

effects on pathway inhibition. Using one agent at higher dose 

could be a short term solution. However, higher dose leads to 

increased toxicity and emergence of resistance to treatments. 

Resistance mechanisms to immunotherapy can occur by 

activation of compensatory signaling. For example, the 

activation of ERK signaling in melanoma when treated with 

BRAF inhibitors may lead to paradoxical activation of CRAF. 

Targeting BRAF and downstream 

MEK at the same time proved to be beneficial for overall 

patient survival, by inhibiting the initial BRAF driver mutation 

and paradox CRAF activation. Alternatively to inhibiting two 

key proteins within the same pathway, a common strategy is to 

parallel inhibit two separate cancer pathways to maximize drug 

efficacy. For example, parallel inhibition of ERK and AKT 

could be beneficial as those pathways may be connected 

through cross talks and feedback loops in breast cancer. Given 

the enormous space of potential drug combinations, strategies 

to effectively predict their efficacy are highly desirable. Many 

methods predict drug synergy using chemical structure and 

genomic information. Preuer et al. used deep learning to predict 

synergy within the space of explored drugs and cell lines 

(Pearson’s correlation of observed versus predicted synergy 

score r=0.73), but observed a much worse performance in 

predicting untested drugs (r=0.48) or untested cell lines 

(r=0.57). Jaeger et al identified new drug combinations using 

network topology of pathway cross-talk. However, gene 

mutation information, arguably the most actionable information 

in the clinic, was not used. In the recent Dialogue on Reverse- 

Engineering Assessment and Methods (DREAM)drug 

combination challenge, the best performing team used a 

protein-protein interaction to augment the genomic features 

based on their network distance from drug targets. Whilst the 

best performer achieved outstanding predictability comparable 

to the level of experimental replicates, synergy was predicted 

based on supervised machine learning algorithms. A common 

bottleneck for the application of all supervised learning 

methods is the limited publicly available combinatorial drug 

screening data. In practice, the combinatorial explosion of drug 

pairs is the limiting factor to both the number of experimentally 

tested drugs, and the number of tested cell lines. Additionally, 

tested combinations are driven by expert’s knowledge, and 

therefore may be focused on known biological examples and 

thereby bias the performance of supervised learning. 

 

Drug synergy challenge 

The similarities on the effect of drugs on gene expression were 

used to predict synergy. However, this requires the generation 

of expression data upon treatment, which is relatively costly. 

We here investigate if we can use similarities of single drugs in 

just the effect on cell survival to learn about the efficacy of 

combinations. We propose a methodology for prioritizing drug 

combinations and for cell line stratification based on the 

functional similarity between two target proteins. For this, we 

extend the notion of compound similarity to target similarity: 

the functional similarity of a pair of target proteins is defined as 

the correlation between the drug responses upon perturbation of 

those proteins, as a function of the activity of a set of essential 

pathways. Pathway activities are computed from data-derived 

gene sets, that have been demonstrated to be more predictive 

than pathway-based gene sets. 

Different cancer types may be driven by different cancer 

pathways. Therefore, the similarity metric is context dependent. 

Two target proteins that are functionally very similar are likely 

to belong to the same signaling pathway; on the contrary, 

functionally dissimilar proteins are likely to belong to unrelated 

pathways. We find higher synergy likelihood when there is 

either very high or very low similarity. Based on this 

information, we build a compound prioritization methodology 

for high-throughput screens. Furthermore, we explore context 

specific (breast and colorectal cancer) drug combinations for 

their mode of actions based on known mechanistic insights 
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from the mono-therapies, to predict synergy and potentially 

enable patient stratifications in the clinic. 

 

Conformal prediction 

Traditional machine learning algorithms for classification 

problems simply predicts the class labels without any 

confidence. Conformal predictors expand on this as they output 

prediction regions for a confidence level provided by the user. 

The confidence value is an indication of how likely each 

prediction is of being correct, for example, a confidence of 

95% implies that the percentage prediction error will be 5% on 

average. Conformal predictors are built on top of traditional 

machine learning algorithms, referred to as underlying 

algorithms, and they can be broadly categorized into 

transductive and inductive approaches; we refer to 

Papadopoulos (2008) for more details. We here consider the 

inductive approach called Inductive Conformal Prediction 

(ICP), which is more computationally efficient as compared 

with the transductive approach. In particular, we use Mondrian 

ICP with SVM or SVM+ as the underlying algorithms, and the 

SVM or SVM+ distance to the decision boundary to define the 

non-conformity measures (NCM). Mondrian conformal 

prediction has the advantage that we achieve validity for the 

individual classes. To evaluate the performance of conformal 

predictors, we consider the observed fuzziness, as defined in 

Vovk et al. 

 

Synergistic drug pairs share distinct attributes 

Drug synergy can arise due to a variety of diverse mechanisms 

which may present as distinct patterns in in vitro assays. Due to 

the large discrepancy between combination efficacy metrics we 

reasoned that each metric may be identifying different types of 

synergistic combinations. Therefore, we looked to quantify 

which drug attributes were shared among all synergistic drug 

pairs and which were metric specific. Since we have previously 

found drug structure to effect pharmacological attributes such 

as toxicity and molecular targets, we investigated if structure 

based similarity between drug pairs was indicative of a pair 

being synergistic. Using chemical fingerprint similarity, we 

found that synergistic pairs were more similar to each other 

than antagonistic and other non-synergistic drugs, across all 

metrics combination efficacy metric, drug synergy scores 

increased with drug structure similarity. These results run 

counter to expectations that synergistic drugs target distinct 

pathways We further investigated drug attributes that could 

characterize synergistic drug pairs and focused on molecular 

targets of these drugs, which has also been shown to effect 

numerous other pharmacological attributes in past research. We 

found that drug pairs sharing a higher number of the same 

targets were not more synergistic or antagonistic than expected 

by chance. 

 

Synergy metrics identify unique synergistic pathway 

combinations 

Drug combination efficacy metrics principally vary in their 

intrinsic assumptions about drug synergy. Previous work in 

cancer drug combinations has demonstrated that drug synergy 

can be achieved through a variety of pathway mechanisms ; 

therefore each metric is most likely identifying distinct 

pathway combinations. Using the KEGG database to identify 

pathways based on the molecular targets of each drug, we 

evaluated whether the combination of targeting two specific 

pathways was consistently synergistic or antagonistic for each 

metric. We specifically evaluated the pathway combinations 

which were most variable among metrics (i.e. were 

significantly enriched for synergy using some metrics and a 

loss of significance in other metrics). With the identification of 

these top differential pathway combinations we investigated 

the potential causes for the variability between metrics. 

 

Suite of metric specific models predicts drug synergy 

Since the synergistic drug combinations showed distinct 

characteristics when compared to antagonistic or other drug 

pairs, we reasoned that using a computational approach we 

could build a classification model to predict drug synergy or 

antagonism based on the similarity of various pharmacological 

and genomic attributes. Due to the diverse nature of each 

combination efficacy metric we chose to build a set of 

classification models, each fit with the synergistic/antagonism 

labels found using a specific metric, to create a model toolbox. 

Additionally, to account for the cell line specificity of drug 

synergy noted in past research and found within our own data 

we used a multi-task learning approach, which utilizes the 

strength of transfer learning while accounting for differences in 

synergy mechanisms between cell lines/cancer. 

 

Related Work 

Karen et al.(2015); Our work finds itself at the intersection of 

two domains: computational methods for prediction of side 

effects caused by DDI and neural networks for graph- 

structured data. As such, a review of related advances in each 

area will be presented here. As manually examining drug 

combinations and their possible side effects cannot be done 

exhaustively, computational methods were first developed to 

identify the drug pairs which create a response higher than the 

additive response they would cause if they did not interact. 

Di Chen et al.(2016); This was previously done by framing the 

task as a binary classification problem and designing machine 

learning models (naïve Bayes, logistic regression, support 

vector machines) which predict the probability of a DDI, using 

the measurement of cell viability. 

Mukesh et al.( 2014); Other related approaches considered 

dose-effect curves or synergy and antagonism . An alternative 

way of approaching the task is provided by models which use 

the assumption that drugs with similar features are more likely 

to interact . 

Assafet al.(2012); Using features such as the chemicals’ 

structures, individual drug side effects and interaction profile 

fingerprints, the models use unsupervised or semi-supervised 

techniques (clustering, label propagation) in order to find 

DDIs. Alternatively, restricted Boltzmann machines and 
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However, all these methods are limited to either providing the 

likelihood of a DDI (but not its type if one exists), or lack 

applicability in inductive settings. 

Bo Jin et al(2017); the Multitask Dyadic Prediction in are two 

methods which overcome these challenges, and are thus going 

to be used as baselines against which our work will be 

compared. Multitask Dyadic Prediction is a proximal gradient 

method which uses substructure fingerprints to construct the 

drug feature representations. Similarly to our work, it has 

access. only to the chemical structure of the drug. Decagon, on 

the other hand, improves predictive power further by including 

additional relational information with protein targets of 

interest. Specifically, Decagon leverages this information by 

applying a graph convolution neural network architecture over 

a graph 

Corresponding to the interactions between pairs of drugs, pairs 

of proteins and drug-protein pairs, treating discovery of novel 

DDIs as a link prediction task in the graph. While the protein- 

related auxiliary information is highly beneficial for the 

algorithm to use, it could also be expensive to obtain. 

Joan et al.(2013); Compared to previous methods, our 

contribution is a model which learns a robust representation of 

drugs by leveraging joint information early on in the learning 

process. This allows it to bring an improvement in terms of 

predictive power, while maintaining an inductive setup where 

the model indicates the types of the possible 

side effects by just looking at chemical structure of the drugs. 

Our model builds up on a large existing body of work in graph 

convolutional networks 

Andreea et al.(20118) have substantially advanced the state-of- 

the-art in many tasks requiring graph-structured input 

processing (such as the chemical representation of the drugs 

leveraged here). Furthermore, we build up on work proposing 

co-attention as a mechanism to allow for individual set- 

structured datasets (such as nodes in multimodal graphs) to 

interact. Overall, these (and related) techniques correspond to 

one of the latest major challenges of machine learning with 

transformative potential across a wide spectrum of potential 

applications (not only limited to the biochemical domain). 

Goodfellow et al.(2016); Many cancers have specific 

molecular causes, e.g., mutations in genes involved in the 

hallmark processes of cancer .Targeted cancer drugs directly 

affect those particular cancer genes. However, 

the efficacy of a drug to block cancer cells' growth may be 

determined by additional genes. For example, trastuzumab is a 

human epidermal growth factor receptor-2 (HER2) antibody 

targeting HER2-overexpressed breast 

cancer cells. 

William et al.(2017); Thus it is valuable to model multiple 

cancer drugs sensitivity and data jointly. 

In recent years, several groups and consortia have developed 

big datasets which include large-scale ex vivo pharmacological 

profiling of cancer drugs and the genomic information of 

corresponding cell lines. 

The drug sensitivity data for some groups of drugs are 

expected to be correlated, due to their common targets and 

Santiago et al.(0212) similar pharma dynamic behaviors. To 

analyze such data, one straightforward method is to use 

(penalized) linear regression methods, for example lass 

regressing each drug on all molecular features in a linear 

manner. Lasso could select a few relevant features with 

nonzero regression coefficient estimates from a large number 

of features. But it cannot address the heterogeneity of different 

molecular data sources. 

Boulesteix et al. (2017) introduced integrative `1-penalized 

regression with penalty factors (IPF-lasso) to shrink the effects 

of features from different data sources with varying `1- 

penalties, to reflect their different relative contributions. While 

lasso or IPF-lasso can be extended to multivariate regression to 

jointly model multiple drugs sensitivity, the correlation of 

drugs is not reflected in the penalization of regression 

coefficients. 

Diederik et al. (2014) proposed tree-lasso to estimate 

structured sparsity of multiple response variables assuming a 

hierarchical cluster structure in the response variables. Each 

cluster is likely to be influenced by some common features, for 

which the effects are similar between correlated responses. In 

this article, we propose the IPF-tree-lasso which borrows the 

strength of varying penalty parameters from IPF-lasso and the 

cluster structure in multivariate regression from tree-lasso. 

Thus, IPF-tree-lasso can capture the different relative 

contributions of multiple omics input data sources and the 

group structure of correlated drug response variables. Since 

some targeted 

 

Integrative Predicting Drug Sensitivity 

Cancer drugs might have similar mechanisms, for example the 

same target gene or signaling pathway, then these drugs are 

likely to have correlated sensitivities. IPF-tree-lasso is likely to 

select common relevant molecular features of these correlated 

drugs, and accordingly to shrink their coefficients with similar 

penalty parameters. Elastic net is also compared here, because 

it considers the grouping effect of correlated features and the 2- 

penalty can improve the prediction performance over lasso. 

Additionally, we also formulate the integrative elastic net with 

penalty factors (IPF-elastic-net) model to provide an extension 

of the elastic net with varying complexity parameters as well as 

varying parameters. However, IPF-tree-lasso and IPF-elastic- 

net have more complicated penalty terms which might require 

new optimization algorithms. We use augmented data matrix, 

so that the original smoothing proximal gradient descent 

method and cyclical coordinate descent algorithm for lasso can 

be employed directly. As elastic net and IPF-type methods 

have multiple penalty parameters to be optimized, the standard 

grid search is computationally not efficient. Frohlich and Zell 

proposed an interval-search algorithm, the efficient Parameter 

Selection via Global Optimization (EPSGO), which is more 

efficient. The  rest  of  the  paper  is  organized  as  follows.  In 
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Section 2, the standard penalized regression methods and their 

extensions with structured penalties are introduced briefly. 

Section 3 describes the simulation scenario based on 

multivariate responses and different types of features, and then 

we present the simulation results and discussion. In Section 4, 

the Genomics of Drug Sensitivity in Cancer data are used to 

compare the prediction performance 

 

Review 

 
Methods of support vector machines (SVM) 

Support vector machines (Vapnik and Vapnik, are one of the 

most successful methods for classification in machine learning. 

One of the key concepts of SVM is the use of separating hyper- 

planes to define decision boundaries, and the optimal decision 

hyper-plane is a plane in a multidimensional space that 

separates between data points of different classes and that also 

maximizes the margin, separating the two classes. SVM uses 

the kernel trick to generate a high dimensional nonlinear 

representation of the input data examples where it performs the 

separation with a continuous separation hyper-plane, such that 

the distances of misclassified data examples from the hyper- 

plane are minimized. In this study, we use a classification SVM 

for training our classification models with a Radial Basis 

Function 

Conformal prediction Traditional machine learning algorithms 

for classification problems simply predicts the class labels 

without any confidence. Conformal predictors expand on this 

as they output prediction regions for a specific confidence level 

provided by the user. The confidence value is an indication of 

how likely each prediction is of being correct, for example, a 

confidence of 95% implies that the percentage prediction error 

will be 5% on average. Conformal predictors are built on top of 

traditional machine learning algorithms, referred to as 

underlying algorithms, and they can be broadly categorized 

into transductive and inductive approaches; we refer to 

Papadopoulos (2008) for more details. We here consider the 

inductive approach called Inductive Conformal Prediction 

(ICP), which is more computationally efficient as compared 

with the transductive approach. In particular, we use Mondrian 

ICP with SVM or SVM+ as the underlying algorithms, and the 

SVM or SVM+ distance to the decision boundary to define the 

non-conformity measures (NCM). Mondrian conformal 

prediction has the advantage that we achieve validity for the 

individual classes. To evaluate the performance of conformal 

predictors, we consider the observed fuzziness, as defined in 

Vovk et al. (2005). 

 

Drug synergy cell line data 

The drug pair synergy data was downloaded via NCI- 

ALMANAC17 and refined to include drug pairs with enough 

publically available data. In total 3647 unique drug pairs in 60 

cell lines were analyzed. Using the raw data provided in NCI- 

ALMANAC, the R package SynergyFinder36 Version 1.6.1 

was used to calculate the Bliss, ZIP, HSA and Loewe synergy 

score for each drug pair. We categorized drug pairs as 

“synergistic” for each metric if their scores were within the top 

366 5% and “antagonistic” if the scores were in the bottom 

66.67%. 

 

Pathway analysis 

All known drug targets were collected from Drugbank and 

matched 369 to KEGG pathways via the KEGGREST37 R 

package using a custom R script. A fisher’s exact test was used 

to find the Odd’s Ratio for targeted pathway combination 

likely to be marked as synergistic for each metric. The most 

variable pathway combinations were found by identifying all 

combinations that had at least one synergy metric with an 

Odd’s Ratio lower confidence interval above 1.5 and an Odd’s 

Ratio higher confidence interval lower than 1. 

 

Feature collection 

Compound Features for the 3,647 drug pairs, multiple 

compound similarity features were collected. Additionally, 

using their known drug targets as listed in DrugBank, we 

collected drug target similarity features as well. The feature, 

source and metric used to measure similarity is listed in 

 

Supplementary table 

The measures of similarity included but were not limited to 

Pearson Correlation, Jaccard Index and Dice Similarity. In 

cases where there was insufficient or missing information, 

features were imputed by using the median value for that 

feature in drug pairs with complete information. 

 

Network features 

We curated a biological network that contains 399 protein- 

coding genes, 6,679 drugs, and 170 TFs. The protein-protein 

interactions represent established interaction, which include 

both physical (protein-protein) and non-physical 

(phosphorylation, metabolic, signaling, and regulatory) 

interactions. The drug-protein interactions were curated from 

several drug target databases. 

 

Predictive model suite 

Our predictive models were trained as binary classifiers using 

the features described above on the NCI ALMANAC data, 

with synergistic and antagonistic drug pairs being our 

respective classes. Every model included the same features, 

however the classes were determined by one of the five 

Drug synergy measures (HSA, Bliss, Loewe, ZIP, ALMANAC 

Score). Mulit-task extremely randomized tree models, a 

decision tree model, was used after model selection and 

implemented using the R statistical software with the extra 

Trees package, the cancer cell line was used as each task. To 

evaluate predictive power 10-fold cross validation was used for 

each model. Down sampling was the chosen sub-sampling 

approach applied to each fold to account for the class 

imbalance between synergistic and antagonistic drug pairs. 
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Classification evaluation 

For evaluating all the binary synergy classifications, receiver 

operating characteristic (ROC) and precision-recall curve 

(PRC) curves were created in R using the pROC41 and precrec 

packages respectively. Area-under-the-ROC curve (AUC) and 

area-under-the-PRC (AUPRC) scores were used to evaluate 

model performance. 

 

DREAM Challenge validation data 

Raw dose-response data from the DREAM-AZ Combination 

Prediction Challenge10 was used as an external dataset to test 

our models. We found 19 drug pairs, unseen by the models, 

available in the Challenge 1 data set tested within cell lines our 

models were trained on. For these 19 pairs features were 

collected in the same manner as described above and drug 

synergy scores for all metrics, besides the ALAMANAC score, 

were calculated as well. The correlation between all synergy 

scores were found using Pearson correlations. The synergy 415 

scores were predicted using each model and then a Pearson 

correlation to the calculated scores were measured. Since the 

calculated HSA score was most significantly correlated with 

the given DREAM challenge score, the predicted HSA scores 

were used in the comparison to the DREAM challenge scores. 

 

Shortcomings of existing techniques 

After conducting the review on drug synergy prediction it has 

been found that the designing an efficient drug synergy 

prediction model is an ill-posed problem. Following gaps have 

been formulated after reviewing the existing techniques: 

1 Ensemble learning: Majority of the existing researchers has 

utilized ensembling of different machine learning models to 

achieve higher accuracy rate. However, ensembling 

methods are computationally extensive in nature, and also, 

unable to achieve maximum accuracy. 

2 Parameter tuning: Existing machine learning models suffer 

from the parameter tuning issues. It has been observed from 

the literature that the meta-heuristic techniques can be used 

to overcome the issue of parameter tuning in an efficient 

manner. However, majority of existing researchers have 

neglected the use of meta-heuristic techniques. 

3 Pre-mature convergence: It has been observed that majority 

of existing meta-heuristic-based machine learning models 

such as particle swarm optimization, genetic algorithm etc. 

suffer from pre-mature convergence issue. It limits the 

performance of drug synergy prediction techniques. 

4 Stuck in local optima: Majority of existing meta-heuristic- 

based drug synergy prediction models suffer from stuck in 

local optima issue. 

5 Computational speed: The majority of existing meta- 

heuristic based machine learning models suffer from poor 

computational speed. 

 

Conclusion 

This paper presents the comprehensive review on drug synergy 

prediction techniques. After literature survey, it has been found 

that ensembling has been utilized to achieve higher accuracy 

rate. However, ensembling methods are computationally 

extensive in nature. Machine learning models may also suffer 

from the parameter tuning issues. Meta-heuristic techniques 

can be used to overcome the issue this issue. Some researchers 

have applied meta-heuristic techniques in the field of drug 

synergy prediction. However, these techniques suffer from pre- 

mature convergence, stuck in local optima, and poor 

computational speed. Therefore, the designing of an efficient 

drug synergy prediction model is still an open area of research. 
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