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Abstract

For decades, cancer research has been focused on understanding the neoplastic transformation of
normal cells into cancerous ones from a cell-centric perspective. However, it is increasingly evident
that the surrounding tumor microenvironment (TME) is equally important for tumor growth,
progression and dissemination.
The TME is a complex and heterogeneous system of interplaying elements strongly intertwined with
normal processes of the surrounding hosting tissue. Cancerous cells and stromal cells, including
different types of infiltrating immune cells and resident tissue cells, interact with each other and with
extracellular matrix components in a very convoluted way. In addition, all of these cells may have
phenotypically distinct variants exhibiting variability in cell traits, such as cell-cell adhesion, migration
capability, proliferation rate and responsiveness to specific treatments; the composition of the cell
population can differ between different regions of the tumor and between different tumors of the same
or different patients, which result in both intratumor and across tumor heterogeneity.
Altogether, the complexity and heterogeneity of the TME hinder the elucidation of cancer driving
mechanisms and biomarkers and render the tumor behavior difficult to anticipate. Ultimately, that
slows down the development of novel cancer therapies and makes difficult the choice of suitable
treatments for specific patients.
Mathematical and computational models may help on describing, explaining and predicting cancer in
a new generation of experimental design assisted by computer simulations. These novel experimental
and computational approaches face new challenges in the era of precision medicine and personalized
cancer therapies, such as capturing the spatiotemporal structure of the TME, vertical and horizontal
integration of multiple-omics data and dealing with heterogeneity at both intratumor and patient
population level.
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Introduction

TME complexity and heterogeneity
Nowadays, TME is frequently referred as a complex system
[1]. Despite, there is no consensus on what a complex system
means [2], there are at least two commonly accepted features
that arguably apply to TME: 1) It is inherently complicate and
intricate; there are a number of constituent elements, with
multiple interactions between them; 2) Its evolution is very
sensitive to initial conditions or to small perturbations [3]. Both
features render the TME and its dynamic behavior intrinsically
difficult to model and anticipate.

In addition to its inherent complexity, the diverse constituent
elements of the TME, such as cancer and stromal cells, exist in
phenotypically distinct variants with variability in cell traits,
such as cell-cell adhesion, migration capability, proliferation
rate and responsiveness to specific treatments. The proportion
of different cell types and variants may change across different
regions of a solid tumor, effect that is commonly referred as
intratumoral heterogeneity. In addition, there may be

differences across tumors from the same or different patients,
which is referred as intertumoral heterogeneity.

Moreover, the internal TME structure or compartmentalization
has to be taken into account. For example, from the histological
point of view, tumors can be roughly classified in inflammed or
noninflamed [4]. The main feature of inflamed tumors is the
presence of tumor-infiltrating lymphocytes (TIL), in particular
IFNγ-producing and PD-L1 expressing CD8+ T cells, whereas
noninflamed tumors are poorly infiltrated by TIL. The formers
usually exhibit high mutational burden and a preexisting
antitumor response, whereas the latters are characterized by the
lack of this response and for being highly proliferative tumors
with low mutational burden.

Clinical evidences support that checkpoint inhibitors mainly act
by reinforcing a previously existing antitumor response and are
much more effective in inflamed tumors [5,6]. However, the
precise location of TIL is critical, as there exist some tumors
with TIL confined to the periphery (excluded infiltrate), which
do not respond to checkpoint inhibitors. Consequently, both
biological and computational models should capture the
internal architecture of the TME; the total count of TIL is not
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meaningful unless we consider also the spatial distribution.
Furthermore, the temporal distribution of interacting elements
of the TME is also relevant, as, for example, infiltrating TIL
may differ in number at time of diagnosis and during
treatment; only TME elements that coincide in space and time
can interact.

Both cellular counts and spatiotemporal distribution of TIL,
tumor cells, and other stromal cells can affect the way they
interact with each other in the TME, which in turn can impact
cell functions and response to treatments.

At the experimental level, it is essential to preserve the global
architecture of the TME in order to capture the tumor
heterogeneity and complexity [7]; most of the current studies
that employ cell lines or simplified co-cultures are very limited
in their ability to predict the clinical outcome of treatment with
accuracy, as they mainly rely on cancer-cell biomarker-based
approaches [8]. However, a suitable biological model or
experimental platform of the TME can be tested in many
different ways; an exhaustive perturbation of all of its
constituent elements and potential intervention points by trial
and error under all possible experimental conditions become
rapidly unaffordable. There is need for computational models
and simulations to prioritize some tests and discard others in an
assisted experimental design in order to render these platforms
cost effective. As complex systems are predisposed to
unexpected outcomes due to the so-called emergent behavior, it
is unlikely that predicting a response to specific treatments
based on the analysis of the individual components of the TME
is possible. Alternatively, in a more holistic spirit, global
integrative models considering different cell types and scales
of complexity and including not only cancer driving but also
treatment response mechanisms are more likely to be able to
capture reality in enough detail to perform reliable predictions.

Types of models used in cancer research: probabilistic
vs. deterministic
Computational models can be roughly classified into
probabilistic and deterministic, depending on how rigid the

underlying mechanisms are assumed, or, in other words, how
certain cause-effect relationships are within the model.

In general, in probabilistic model’s specific events may or may
not take place with a given probability, so there is certain
randomness involved, whereas in deterministic models,
biological processes are described by mean of equations that
always produce the same output for a given starting conditions.
Both modeling approaches have been pervasively used in
cancer research to describe cancer related processes in both
unperturbed (untreated) and perturbed (treated) TME.

It is worth noting here that, despite the stochastic nature of its
constituent elements, as a whole the evolution of a complex
biological system in response to perturbation can be more
reproducible and predictable than expected, responding in most
of the cases in a consistent manner. This is the case, for
example, of the immune response to eliminate pathogens
without severe harm of normal tissue; paradoxically, the
randomness and stochastic behavior at the lower level of the
immune system (single cell level) is integrated to derive a more
predictable outcome at the system level (local or systemic
immune response), resulting, for example, in a controlled
variability of the T cell activation [8], or a predictable course
of lymphocyte expansion and contraction after exposure to a
pathogen in spite of the intrinsic randomness in individual cell
fate [9,10].

Thus, despite the behavior of the TME is more likely to be the
probabilistic output of a complex and stochastic system [11], it
can be also conceptualized, in a deterministic or mechanistic
manner, as a collection of cellular mechanisms and signaling
pathways that always have the same behavior under the same
circumstances. That allows a wide range of modeling
formalisms from purely probabilistic to purely deterministic in
order to describe, explain, simulate and predict cancer related
events in the unperturbed TME (in the absence of any
treatment) and in response to therapy (See table 1).

Table 1. Modeling formalisms and model construction strategies commonly used in cancer research.

Deterministic models

Ordinary differential equation (ODE) based models. ODE is a differential equation of one independent variable and its derivatives. Models based on ODE can be used to
describe single cancer related events, such as tumor growth [12] or intra-tumor mechanical forces or tumor-growth solid stress [13,14], but also to describe multiple
events in network-based models.

Network-based models based on Petri net. Petri net (PN) is discrete dynamic modeling strategy developed by Petri in 1962. PN is a directed, weighted bipartite graph
consisting on two types of nodes: places and transitions. Places are connected through transitions by weighted interactions, and the model determines the flux of tokens
(units or weight or molecules) between places in time. In the context of cancer, Petri net models has been used, for example, to figure out how to minimally perturb the
gene regulatory network to avoid disease phenotype in glioma [15].

Boolean networks. Boolean networks (BN) are discrete logic-based modeling strategy where nodes can take only two states, usually denoted by 1 and 0, which
corresponds to either active or inactive states. The evolution of the system in time is determined by a set of Boolean logic functions, which integrate the state of the
predecessor nodes (regulators) to predict the state of the successor nodes (regulated) in the network topology. The network state can be updated using either
synchronous or asynchronous updating schemes [16]. Boolean networks are particularly suitable for large-scale models due to its high efficacy [17], as it is a parameters-
free strategy.

Network-based models based on linear programming. Linear programming (LP) is the problem of optimizing a linear function or a system described as a linear
mathematical model, in order to explain an outcome. LP models can be roughly classified in three types: integer programming, binary linear programming, and mixed
integer programming.
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LP has been used in cancer to model myeloma-osteoclast interactions under normoxic/hypoxic conditions and how myeloma cell growth and drug response were
affected by hypoxia [18].

Agent-based Models. In an agent-based model (ABM) the actions and interactions of autonomous agents, such as cell types communicated through secreted ligands,
are simulated usually using Markov Chain Monte Carlo; the aggregated behavior emerges from the simulation of a large number of simple agents. These models can be
based on 2D or 3D representations of the tissue, and there are currently several works modeling tumor growth and angiogenesis in solid tumors [8].

Probabilistic models

Classical statistical models. Statistical models are classical mathematical models that adopt a set of assumptions concerning the generation of a sample data from a
population. This set of assumptions is defined by a set of probability distributions, which relate one or more random variables and possibly other non-random variables.
All classical statistical hypothesis test and statistical estimators are derived from statistical models, so these models have been pervasively used and reviewed in cancer
research [19] , and they are the foundation of some current systems or network-based approaches.

Darwinian or evolutionary models. Darwinian or evolutionary models explain tumor heterogeneity and clonal evolution [20] based on population statistics [21]. Within
these models, cancer cells are considered a heterogeneous population and cell lineage is determined based on genetic similarity. An evolutionary tree is constructed
based on genomic analysis of these cancer cells, and more specifically on the mutation status or epigenetic marks [7]. In these models, the selective pressure on the
population of cancer cells caused by a treatment induces a population shift due the survival of the fittest cells. These cells have genetic features that make them resistant
to the treatment, and they will repopulate the tumor afterwards. The models identify in the evolutionary tree clonal branch points where genetic events may be associated
with relevant effects such as acquired treatment resistance.

Bayesian networks. Bayesian networks are graphical model representations of probabilistic relationships between variables of interest. This kind of models includes a
qualitative part, or network topology, and a quantitative part, or local probabilities for each interaction, which allows numerically measuring the impact of a variable or sets
of variables on others. Both the qualitative and quantitative parts define a unique joint probability distribution over the variables or nodes, which depends on the states of
its parents according to network the topology. In the context of cancer, Bayesian networks have been used for multiple tasks, such us mechanism discovery, diagnosis or
clinical decision support [7]

Model construction strategies

Data-driven approaches. Data-driven approaches include statistical and machine-learning strategies to learn relationships between entities, such as genes or proteins,
drugs or metabolites, from heterogeneous types of data. The main strength of data driven approaches is the possibility to discover unforeseen relationships, such as
between drug effects and cell phenotypes, being the main limitations of these models that they need to be trained with a large amount of data to be predictive and that
they provide a limited mechanistic insight.

Prior knowledge-driven approaches. Prior knowledge-driven approaches rely on regulatory interactions previously reported in literature or databases and are typically
focused on a preconceived hypothesis. This approach is typically used to construct dynamical models, and depending on the scale whereby the biological events are
taking place they can be classified in: 1) Dynamical models that describe the clinical action of therapies at the organism level; 2) Enhanced pharmacodynamics models:
combining intracellular molecular mechanisms or pharmacokinetics and physiological pharmacodynamics; 3) Cell-cell communication models; and, 4) Multiscale models
considering intracellular, intercellular and physiological layers of processes occurring in an organism with cancer, including the effects of drugs and of the immune
system.

Cancer landscape: unperturbed vs. perturbed TME
Models can be focused on specific parts or processes of the
TME in a classical reductionist (top-down) approach or try to
capture the emergent properties of the system as a whole in a
more holistic spirit (bottom-up), which refer to the ideas of
"divide and conquer", and "the whole is more than the sum of
its parts", respectively. The former corresponds to a more
classical research strategy, whereas the latter refers to the
systems biology paradigm. Resulting from this systems or
holistic view of solid tumors, some properties arise with
potential prognostic and therapeutic interest. Particularly
interesting are the concepts of the cancer stability landscape
and cancer attractors [22], or self-maintained cancer programs
derived from the stability of the underlying regulatory network.
The implicit assumption is that, due to both the intrinsic
features of stromal cells and tissue and the selective pressure
upon cancer cells by antitumor mechanisms, cancer
transcriptional programs exists in a discrete set of possibilities,
rather than a "continuum" of tumor transcriptome. More
specifically, in the context of cancer acquisition, there is a
natural homeostatic robustness in the underlying regulatory
network between the elements of the TME that arise from the
presence of redundancies in cell signaling mechanisms, such as
regulatory feedback and feedforward loops. This homeostatic
robustness was initially intended, in the healthy tissue, to
implement some functionalities, such as the capability to
buffering small interruptions in cell signaling processes, cell

signal memory and the integration of continuous input signals
into a "all-or-none" response by using a hysteresis mechanism
[23]. As a side effect, it prevents the TME to exist in some
transient and non-functional erratic states and favors others
more robust against small spurious changes. Among the latters,
there are some immunocompetent states that get rid of the
cancer cells (healthy attractors), but, unfortunately, there are
others that are immunotolerant and allow the tumor growth
(cancer attractors).

In other words, the very same network backbone that keep a
tissue in a healthy or physiological state carrying out normal
functions may maintain the system locked-in cancer states,
which behave robustly against perturbations, including
therapeutic intervention [24]. Consequently, identification and
monitoring the constituent elements of network stability motifs
may have an interest, and it has been proposed as strategy to
find both biomarkers and therapeutic targets [25].

In this context, cancer acquisition can be visualized as a critical
state transition in the cancer stability landscape (from now on,
cancer landscape) from healthy to disease (cancer) attractors,
so is the cure or the effective response to therapeutic
checkpoint blockades in the opposite direction [7]. In this
cancer landscape one may focus on the characterization and
mechanistic elucidation of the unperturbed cancer attractors, or
on the transitions and trajectories along this landscape in
response to perturbations (see figure 1). The former refers to
more description oriented modeling approaches and cancer-
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driving mechanism discovery, whereas the latter is typically
associated to the discovery of novel targets for therapeutic
intervention and the corresponding response mechanisms.

Current limitations and future directions of
experimental and computational models of the TME
In order to be able to navigate the cancer landscape and predict
response to cytotoxic or targeted therapies in individual
patients, we need models that capture the TME complexity,
deal with both intra- and inter-tumoral heterogeneity, and
preserve the spatiotemporal architecture of the TME [26]. That
starts, first of all, with the biological model and experimental
assays, and secondly, by the adopted modeling formalism
according to the intended purpose of the model. In other words,
it is unlikely that a given process that relies on the interplay
between different cell types is properly described by a model
constructed using data from an experimental platform that does
not include all relevant players or using a mathematical
representation that neglects such interplay or the
spatiotemporal distribution of the participants.

Unfortunately, current standard in vitro and ex vivo
experimental platforms based on cell lines and spheroids or
organoids are limited in their ability to mimic the native tumor,
which yields a poor mapping to clinical outcomes [7]. Efforts
have to be done in the direction of preserving cellular and
microenvironmental complexity and heterogeneity, as well as
the spatiotemporal architecture, as they have been pointed out
as contributing factors in the variability of response to therapy
[26].

Computational models of the TME can be constructed with
different levels of mechanistic detail and
compartmentalization, and the fidelity of the resulting cancer
landscape will follow accordingly. Bulk tumor-tissue models
can be useful to describe or to get insights into global TME
behavior, but they may fail to describe crosstalk between
specific cellular components of the TME. To this end, it may
be reasonable to construct multicellular models to deal with
tumor cellular heterogeneity, where the model explicitly
considers different cell types, such as in agent-based models
(see table 1).

Nowadays, there are two general approaches to achieve such a
multicellular model: 1) Mathematical/computational
deconvolution from bulk-tumor experimental information; and,
2) Model construction based on experimental information from
single-cell technology. Putting together experimental data from
single-cell technology in a multicellular model can be
described as a horizontal integration, in contrast with a vertical
integration, which is the integration of different types of-omics,
phenotypical and clinical data in a so-called multi-scale model.
Different biological scales relevant for cancer modeling
operate at different spatial and temporal ranges; multi-scale
modeling requires establishing a linkage between these scales
[27].

Model deconvolution in different cell types and the assembly
of multi-scale models by data integration, as well as the
spatiotemporal compartmentalization, seem promising

strategies to capture the complexity and partially address the
heterogeneity of the TME, specially under the promises of
single cell technology, However, modeling based on this
sensitive technology faces new challenges; single cell
technologies such us single cell RNA-seq open the possibility
of detection of new subpopulations of cells but also open the
gates to confounding factors such as the cell cycle and other
oscillatory processes, which constitute a source of
heterogeneity [28].

Teasing apart these sources of heterogeneity is needed in order
to robustly identify functionally distinct subpopulations of cells
and to construct suitable multicellular models.

Unperturbed	TME	 Perturbed	TME	

Suitable	treatment		
predic5on	

Integra5ve	model:	naviga5ng	the	cancer	landscape	

Cancer	
a(ractor	

Healthy	
a(ractor	

Transient	perturbed	
state	a6er	treatment	

Studying	the	tumor	at	
baseline	

Immunocompetent	

Studying	response	to	
treatment	

Immunotolerant	

Characterizing	cancer	a@ractors	and	
mechanisms	of	tumor	growth	and	

dissemina5on	 Elucida5ng	response	mechanisms	

Figure 1. Toward integrative models of solid tumors: perturbed and
unperturbed tumor microenvironment (TME.) Experimental
information from unperturbed (untreated) and perturbed (treated)
TME can be used to assemble models that describe cancer-driving
and treatment response mechanisms. Such integrative models, would
allow not only characterizing different types of healthy and cancer
attractors, but also predicting how to transit from undesired to
desired states in the cancer stability landscape.

Apart from the horizontal and vertical integration of data, there
is yet a third type: the integration of cancer-driving and
response mechanisms of unperturbed (untreated) and perturbed
(treated) TME respectively. Traditionally, these are two
different aspects of the TME that have been studied separately.
However, it seems reasonable to assume that models able to
predict response to specific treatments in specific patients
would require the integration of a comprehensive list of both
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cancer-driving and response mechanisms and an individual
patient profile on the status of such mechanisms. Both the
elucidation of mechanisms and the identification of biomarkers
reporting their status in individual patients are challenging, and
they require either a significant amount of perturbation
experiments to construct the models or prior knowledge on the
underlying mechanisms or both, as well as massive patient
population bioinformatics analysis to characterize individual or
groups of patients [29]. Thus, the construction of predictive
models able to identify responders and non-responder to
specific treatments is an ongoing task.

In this article, we review what has been achieved in modeling
and simulation of the TME so far and comment on current and
future challenges.

Modeling the Unperturbed TME: Discovery and
Description of Cancer-Driving Mechanisms
Modeling the unperturbed TME refers here to the description
of the tumor behavior in the absence of therapeutic
intervention. These models attempt to elucidate and simulate
cancer-driving mechanisms as they normally perform in order
to facilitate tumor growth.

Studying dysregulated pathways with and without
oncogenic mutations in cancer cells
Traditionally, the identification of dysregulated pathways in
cancers has been bound to oncogenic mutation previously
known. Oncogenic mutations in some genes can induce
neoplastic transformation of cells by changes in specific
pathways of the underlying regulatory network that eventually
determine the cellular program [30]. Some of these changes are
easy to anticipate, such as those in proteins directly regulated
by a mutated gene, whereas others can affect proteins far away
downstream in the pathway and can only be pointed out under
the scrutiny of systems modeling [31]. There exist examples of
this kind of model-based studies in some of the most
commonly mutated pathways in cancer, such as p53 [8], RAS
[7], GCSFR [32], and the ErbB family of receptors [7]. The
experimental part of these works was based on different cancer
cell lines, and the adopted modeling formalism include both
deterministic and probabilistic approaches, such as mass action
ODE models [33] and weighted linear combinations [34] in the
former, and partial least square regression [35], stochastic
simulations based on Gillespie algorithm [36,37] and Galton-
Watson branching processes [32], in the latter.

Under the paradigm of systems biology, it is also conceivable
that intact cellular networks exhibit dysregulation for specific
pathways, for which no constituent element is affected by
oncogenic mutations. In other words, under this systems
perspective, most dysregulated pathways of a mainly intact
cellular machinery are just operating differently because the
system is trapped in a cancer attractor [22] or a self-maintained
state that differs from a normal state, and which has been
reached by the action of a reduced number of triggering factors
or mutations. That was something observed by Mani et al. [37],
when investigating dysregulated pathways in human tumor

related versus unrelated B cells for three kinds of non-
Hodgkin's lymphomas by using a network-based model
inferred from transcriptional data.

Similar works are the one proposed by Chang et al. [38] on
effector pathways downstream of RAS by combining a protein-
protein interaction network with transcriptomics data by linear
regression of gene expression data with respect to the signature
defined by specific network modules, and the one by Heiser et
al. [39] on the activation of the ERK pathway by ErbB family
receptors in breast cancer using a logic-based model
constructed from literature and trained using transcriptomic
and proteomic data.

There also exist models to describe the impact of mutations on
the intra-tumor heterogeneity, such as the model proposed by
Howk et al. [40] to explore the role of the accumulation of a
large number of genetic alterations as main driving force in
oncogenesis, rather than the traditional biological perspective
of the driving role of a small set of genetic mutations. In this
case, the model exhibits certain vertical integration resulting in
a multiscale model where different scales were described using
different modeling formalisms; the time required for a cell to
divide or die is governed by a set of ODE, and the fate of each
individual cells is subject to stochastic variation and calculated
through Monte Carlo simulation.

Altogether, these works on the impact of oncogenic mutations
have contributed to understand the existence of heterogeneity
at cancer cell levels and to enumerate a variety of possibilities
to affect the same and different cancer associated pathways.
Moreover, some of them were even intended to explicitly
describe the intratumor heterogeneity in cancer cells [40].

The description of these mechanisms is of course only part of
the puzzle. The link between them and a phenotypic outcome,
such as cell death or survival, is strongly intertwined with the
other elements of the TME, such as infiltrating immune cells,
which are not explicitly considered in these cancer-cell-centric
models.

Models of tumor growth and angiogenesis in the
unperturbed TME
Tumor growth is a classical cancer related event described with
the assistance of mathematical models, and, especially ODE-
based models. In general, these models describe the tumor
volume in time as a function of some variables and parameters.
Depending on the type of equations there are different
categories of ODE-based models that have been used to
describe tumor growth, which may differ in predicted outcome
and be more suitable for specific tumor types. Among the most
frequently used we find exponential [41], Mendelsohn [42],
logistic [43], linear [44], surface [45], Bertalanffy [46] and
Gompertz [47], which have been recently reviewed and
compared [48].

In general, exponential models are suitable to describe early
stages of tumor growth, when the population of cells divides
regularly producing two daughter cells for each parental cell
and there is homogeneous availability of oxygen and nutrients.
However, exponential models fail when the tumor reaches a
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critical mass and angiogenesis and nutrient depletion play a
role [47,48]. The other categories of ODE-based models for
tumor growth try to overcome the tumor size scalability
problem including parameters to correct the overestimation of
the exponential model or assuming an initial exponential
growth that becomes linear over time.

Apart from these ODE-based models of tumor growth, there
are other more modern models, which rely on the description
of the underlying mechanisms. A remarkable example of a
multiscale model of avascular tumor growth is the work of
Jiang et al. [49,50], where processes, such as cell proliferation,
transit and consumption/production of nutrients/wastes,
adhesion and cell-environmental interactions are integrated
using different probabilistic and deterministic modeling
formalisms: lattice Monte Carlo model for cellular dynamics,
Boolean networks for the subcellular level, and a system of
ODE for the chemical dynamics.

At some stages of tumor growth, the center of the tumor
becomes hypoxic and necrotic and the tumor needs its own
vasculature to keep growing. Consequently, angiogenesis has
attracted attention as a cancer driving mechanism to be
described and as potential point for therapeutic intervention.
As illustrative example of works on angiogenesis, Finley et al.
[51] proposed a VEGF centered angiogenesis model trained
against in vivo experimental data for the levels of free and
bound VEGF Trap in mice bearing human tumor xenografts in
order to predict the endogenous rate of VEGF secretion by
myocytes and endothelial cells, which can only be measured in
in vitro experiments. The model includes a set of ODEs to
describe how the species' concentrations vary in time in three
compartments (normal tissue, blood and tumor) and an
equation for the tumor volume. Focused on other aspects of
angiogenesis, Su et al. created a multicellular ABM model of
cell growth in myeloma, where they simulate the effect of
SDF1 induced chemophysical communications among
different types of cells [52]. With the idea of a global
multicellular-multiscale-integrative model in mind, modeling
tumor growth/size and angiogenesis is arguably important, as
they may influence the intratumor heterogeneity overtime.
Hypoxia gradients and its evolution are relevant for predicting
the global and local TME behavior, as they influence the
neovascularization and immune cells attraction, extravasation,
migration and activity, which are ultimately related with the
patient response to therapy and tumor dissemination.

Models of tumor invasion
Modeling mechanisms of tumor invasion has attracted
attention, as they are related with both tumor progression in the
native location and metastasis. Due to that, biomarkers
reporting the activity of these mechanisms in the unperturbed
TME have prognostic value in terms of overall or relapse free
survival and can be potentially used for patient stratification.

Tumor invasion is influenced by chemical factors and physical
forces needed for the degradation of the host tissue.
Concerning the former, there are some attempts to model these
events, mainly centered on the tissue degradation by
metalloproteinases (MMP). Deakin and Chaplain [53]

proposed an ODE-based model focused on both soluble and
membrane-anchored MMP and their role in degrading collagen
structures and cross-linked fibers. Mumenthaler et al. [54]
proposed an ODE-based model (reaction-difussion equations)
to describe the tissue degradation process centered on the
description of the MMP concentration and the density of the
extracellular matrix.

Concerning methods modeling physical forces, Mitchell and
King [55] recently reviewed computational and experimental
models of the cancer cell response to fluid shear stress,
including cell exposure to interstitial flows [56] and
mechanotransduction phenomena [57] and cell behavior in the
circulation [58].

Katire et al. [59] discussed computational modeling describing
the effect of changes in both cellular [60,61] and extracellular
[62,63] mechanical properties, such as stiffness and adhesivity,
and identified mechanistic pathways for cancer progression.

In general, tumor aggressiveness is very much determined by
its capacity to disseminate, which can be partially reported by
monitoring the activity of mechanisms of tumor invasion.
Consequently, predictive models of the TME would very much
benefit from considering these mechanisms and characterizing
them across patients.

Identification of biomarkers in the unperturbed TME
Biomarkers can be defined as measurable indicators of
biological processes, which can be either normal or pathogenic.
In oncology, they may also report the biological response to a
therapeutic intervention in the perturbed TME and be used as
predictors of clinical outcome and to classify patients in
responders and not responders to specific treatments. However,
the complexity of the immune response in the TME hinders the
identification of reliable biomarkers across different datasets of
patients. Network-based modeling constitutes an approach to
deal with this complexity and ease the identification of
indicators of good or bad prognosis.

Network analysis of high-dimensional molecular data allows
the identification of highly connected nodes (hubs) [64] and
central nodes (bottlenecks) [65], as well as sets of highly
interconnected nodes (modules) [66,67]. Hubs are arguably
good potential biomarkers, as they may report the activity of
many other interacting nodes, whereas the identification of
modules is more related to the discovery of cancer-driving
mechanisms or pathways. The validity of these biomarkers is
commonly supported by their statistical association to clinical
traits, such as patient survival. Examples of this approach are
the identification of driving genes in brain cancer invasion [68]
and breast cancer oncogenesis [69].

Rather than trying to construct and analyze a global network,
one may focus on the identification of small network motifs of
few genes with specific properties in order to find relevant
biomarkers. More specifically, network motifs conferring bi- or
multi-stability are particularly interesting, as they shape the
cancer landscape; both healthy and cancer attractors requires
their existence. These motifs constitute biological switches
involved in a number of biological processes such as cell
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differentiation [70], the mitogen-activated protein kinase
(MAPK) cascade [71,72], receptor tyrosine kinase activation
[73], and cell cycle regulation [74]. Consequently, the
constitutive elements of such motifs are potentially interesting
biomarkers and drug therapeutic targets. Large scale search of
bi-stable motifs in a prior knowledge network derived from
literature allowed the identification of switches including
interesting biomarkers in lung cancer and hepatocellular
carcinoma [25], such as, the bi-stable toggle switches between
FN1 and SPP1 and between EDN1 and; SPP1 is a negative
survival factor in patients with non-small cell lung carcinoma
(NSCLC) [75], whereas the expression of the hypoxia-
inducible angiogenic growth factor EDN1 is associated to poor
prognosis in NSCLC [76].

Integrative models of the TME should definitely consider
biomarkers of the unperturbed TME, as they may report the
status of a variety of cancer driving mechanisms and can be
characterized across patients. However, the tumor architecture
has to be taken into account, as different regions of the tumor
may operate through different cancer-driving mechanisms,
which may imply differences in drug sensitivity and prognosis.
That lead us to the idea of monitoring different regions of the
tumor, rather than a bulk-tumor biomarker assessment. Of
course, this is something not feasible in most of current
standard experimental platforms.

Modelling Perturbations of the TME: Describing
Response to Therapy and Identification of
Therapeutic Targets and Biomarkers
Perturbation of the TME refers in this context to therapeutic
interventions. Modelling the perturbed TME attempts to
describe and predict the tumor response to specific therapies
and to find novel therapeutic targets and biomarkers of the
adequacy of a given treatment for a given patient. In the
attempt to improve the response to cancer treatment, different
constituent elements of the TME have been explored as
potential therapeutic targets during the last decades of cancer
research [77], such as tumor cells, different elements of the
immune system, and events related to tumor growth and
accessibility, like angiogenesis or the composition of the
extracellular matrix. In general, combined therapies that allow
simultaneously targeting multiple robustness features or
weaknesses of a specific tumor, has been envisioned as a
promising strategy to increase response rates, decrease tumor
recurrence and minimize adverse reactions [78].

Combined therapy targeting multiple subpopulations
of tumor cells
Deep sequencing has revealed a vast genetic heterogeneity that
exists in individual tumors. This intratumor genetic
heterogeneity explains why both de novo and acquired
resistance arise with both molecularly targeted drugs and
cytotoxic chemotherapy, which limits the effectiveness of
conventional single treatment approach by both decreasing
response rates and increasing tumor recurrence.

One solution for the problem of cancer drug resistance is a
well-designed combinatorial therapy. Examples of current
effective combinations are trastazumab in combination with
paclitaxel in breast cancer [79] and cetuximab in combination
with irinotecan in colon cancer [80].

However, the scale of the combinatorial problem of finding
effective combinations is challenging. There is need for
methods to evaluate and prioritize the best candidates for
further experimental evaluation, and computational approaches
are being applied for this purpose. Currently, there exist a
variety of different modeling approaches, but they all have in
common the construction of an initial model based on prior
knowledge or inferred from data by data-driven approaches,
which is subsequently enriched by model training or internal
validation based on known test data. Experimental validation
or invalidation of predictions can be iteratively used to
improve the model. For example, Darwinian models have been
applied in NSCLC to identify optimal combinations and
posology for EGFR inhibitors gefitinib and erlotinib for
delaying the evolution of resistant mutants [81], and to identify
that sequential treatments using cytotoxic agents in
combination with erlotinib or gefitinib are more effective than
single treatment or concurrent combination dosing [82].

Alternatively, to the static view of the evolutionary tree
constructed based on genomic data of Darwinian models, one
may consider to monitor a tumor in time and predict dynamic
vulnerabilities. The so-called "temporal collateral sensitivity"
refers to the phenomenon induced by a drug of transient tumor
sensitization to other drugs. Genotypic, phenotypic, signaling
and binding measurements can be combined in stochastic
(probabilistic) computational models to adapt the therapy in
time in order to exploit these vulnerabilities [83].

More focused on the description of the underlying mechanisms
there exist a variety of network-based models to find drug
combinations or synergy. For example, a model of the ErbB
pathway was proposed to explain the limited benefits of
gefitinib treatment in lung cancer for tumors with wild-type
EGFR with respect to those with a deletion of exon 19 and a
point mutation L858R, which are associated with elevated
phosphorylated AKT and sensitivity to tyrosine kinase
inhibitor gefitinib [84]. This model is a deterministic mass-
action ODE based and includes the receptor internalization
mechanism and activation of ERK and AKT. Simulation of this
model indicated that differences in signaling observed between
wild-type and mutants rely on a slower EGFR internalization.
In another example, phosphoproteomic data before and after
IGF-1 stimulation in MDA-MB231 human triple-negative
breast cancer cells was used to construct a mass action model
of the IGF-1 signaling network [85]. This model was used to
verify that the combination of MAP4K and PI3K/AKT
pathway inhibitors provides synergistic effect in reducing cell
viability, whereas the combined inhibition of MAPK and
mTOR pathways activates AKT and increase cell viability.

Computationally predicting drug combination response
typically relies on extensive perturbation data. Alternatively,
one may consider constructing models based on data from the
unperturbed TME and prior knowledge about regulatory
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interactions to predict the response to single or combined
treatments. Flobak et al. [86] reported a computational
approach to discover drug synergies in gastric cancer by
logical modeling based on baseline (unperturbed) proliferative
state of tumor cells derived from literature and databases,
which integrates information about MAPK pathways (JNK,
p38 MAPK and ERK), the PI3K/AKT/mTOR pathways, the
Wnt/β-catenin pathway, and the NF-κB path-way, as well as
crosstalk between these pathways. The model is focused on
specific cancer cell biomarkers obtained from unperturbed
tumor cells and allowed the authors to identify by automated
logical reasoning synergistic drug combinations to inhibit
tumor growth. Four out of five of these predicted combinations
were experimentally validated afterwards, which confirmed the
utility of the method to contribute to preclinical discovery or
effective anticancer drug combinations.

Rather than trying to elucidate and integrate a detailed
mechanistic description, including all the constituent elements
of relevant cancer-related pathways, one may consider a pair-
wise approach to identify single and combined cancer
treatments. More specifically, cancer vulnerabilities can be
identified by detection of the so-called "synthetic lethality",
which refers to the situation when the inhibition of two genes
is lethal for cancer cells, whereas the inhibition of each single
gene is not. Knowledge about these synthetic lethality events
opens opportunities to selectively attack cancer cells with
drugs that target the pair of a gene who is inactive only in these
cancer cells [87,88]. A closely related concept is the so-called
"synthetic dosage lethality", which refers to the phenomenon
when the overactivity of one gene renders other gene essential
for cell survival. This type of events is particularly interesting
to selectively attack cancer cells with overactive oncogenes
that are difficult to target directly by targeting the synthetic
dosage lethality partners.

A number of screening technologies have been developed to
detect synthetic lethality and synthetic dosage lethality in
model organisms [89,90], human cell lines [7] and based on
human cancer genomic data. In the latter case, the increasingly
accumulated cancer genomic data has allowed the data-driven
construction of synthetic lethality and synthetic dosage
lethality probabilistic networks, and correctly identify these
events for the tumor suppressor VHL and predict gene
essentiality and clinical prognosis [91]. Synthetic dosage
lethality has also been investigated in the human metabolic
network, and it has been shown that it is highly predictive of
tumor growth and clinical outcome [92].

In general, modeling efforts to target multiple subpopulations
of tumor cells reflects the need to deal with intratumor
heterogeneity, but it only refers to the variability in the
cytotoxic effect on cancer cells of a given treatment. Other
aspects of this intratumor heterogeneity, such as the
heterogeneity of TIL, is not considered at all by these models
and it has to be addressed in integrative models intended to
predict the global clinical outcome of specific patients.

Enhancing the antitumor immune response in the
TME
Activating the immune system for therapeutic benefit in cancer
has been a goal in cancer research for years, but only recently
cancer immunotherapy has become a reality [93].

Different immune cells can have both antitumor and pro-tumor
effect, and they interact with each other and with other
components of the TME in a very convoluted regulatory
network; predicting the overall effect on the immune activity
of targeted therapies interfering this network is difficult.
Models can assist to better understand this complex biology
and predict effective and combined ways to influence the
system toward a competent immune response by directly
targeting immune cells activity or by enhancing the
immunogenicity of tumor cells. There are several examples of
the latter case, such as increasing cancer cells antigenic burden
by selectively introduce DNA damage, arresting tumor growth
by MEK1 inhibition, inducing apoptosis by mTOR inhibition,
etc [93]. In another example, a deterministic logic-based model
of RAW 264.7 mouse leukemic macrophages showed that,
despite a model simplification to reduce the complexity of the
drug combination design problem, relevant cross-talking
between signaling pathways was preserved, providing a
sufficient condition under which the drug combination effect
could be maintained. Subsequently, the model was used to
identify three synergistic drug combinations on nuclear factor
Kappa B (NF-κB) pathway, which were experimentally
verified [94].

These works based on the perturbation of individual or
multiple mechanisms or pathways constitute the foundation of
the antitumor immune response in future integrative models.
However, despite these works have shown their utility to
identify suitable targets to boost the antitumor immune
response, the resulting predictions and validations referred to
the average behavior in the biological model and experimental
platform used to construct and train these models, for which
the TME may differ dramatically with respect to patient’s
reality and diversity.

Once more, there is need for experimental platforms that
preserve the global tumor architecture and spatiotemporal
characteristics in order to capture the complexity and
heterogeneity of the TME, and for computational models based
on these experimental platforms that explicitly consider all the
elements of this complex system and their intra- and inter-
tumor variability. Otherwise, model prediction may be correct
but refer solely to experimental conditions far away from the
patients TME.

Models of tumor growth and angiogenesis in the
perturbed TME
There are several elements of the stroma of solid tumor that
promotes tumor growth and may confer protection against the
antitumor immune response, such as endothelial cells, cancer-
associated fibroblasts, mesenchymal stromal cells, the
extracellular matrix and tumor vasculature. However, there is
an intrinsic difficulty in targeting these components, as they
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usually play a role in normal tissues and processes. It has been
suggested that some of these processes, such as the regulation
of the composition of the extracellular matrix, rely on 'protease
web' or a set of interconnected pathways that should be studied
with a systems approach using network-based models [95], and
there exist some attempts to do that [7]. However, only some of
these processes, such as angiogenesis, have been investigated
with the assistance of computational modelling to find
therapeutic targets. It is commonly accepted that
neovascularization is essential for tumor growth and cancer
progression in solid tumors. Despite the multifactorial and
multicellular nature of angiogenesis, TIE-2 expressing
monocytes (TEM) have been distinguished for being critically
involved in this process. Therefore, there is a keen interest on
dampening the angiogenic activity of TEM as therapeutic
strategy. However, the angiogenic activity of TEM is adopted
after the tumor infiltration and shaped by the complexity of the
tumor microenvironment, which hinders the elucidation of the
molecular basis of such activity. Using a deterministic logic-
based model of monocyte behavior inferred from single and
double perturbation experiments, Guex et al. identified several
minimal combined treatments capable to reverse high-
angiogenic TEM to a low-angiogenic phenotype more similar
to circulating monocytes, which were experimentally verified
using TEM derived from breast cancer patients [96]. Examples
of these minimal treatments are the inhibition of TIE-2 kinase
combined with TGF-β, and simultaneously engaging
VEGFR-1 using either VEGF or PIGF. Treated patient derived
TEM exhibited less angiogenic activity in a mouse cornea
vascularization assay than non-treated.

Another logic-based model of the inflammatory angiogenesis-
related NF-κB pathway in endothelial cells using dose-
response data for drugs targeting pathway elements was used
to identify drug synergies, such as the combination of
geldanamycin, a HSP90 inhibitor, and PS-1145, a IκB kinase
(IKK-β) inhibitor [97].

There are several works using ABM models in the direction of
mimicking the dynamic tissue changes in solid tumors. Wang
et al. constructed an ABM-based model of melanoma cancer
that integrates angiogenesis and tumor growth under combined
therapy [98]. Similarly, using a hybrid multi-scale ABM, Ji et
al. predicted the impact of combined therapies on myeloma cell
growth [99]. Within this model, intracellular signal
transduction events were described using ODE, whereas cell-
cell communication between cancer cells, stroma cells and
immune system were described using ABM formalism.

In general, most of current modeling efforts of tumor growth
and angiogenesis in the perturbed TME describe the effect of
specific treatments on these processes without considering
other processes of the TME, such as the antitumor immune
response, nor the heterogeneity of the response within and
across tumors. Concerning the latter, most of these models are
oversimplifications from the mechanistic point of view, as they
are constructed as a cause-effect relationships network from
the experimental data. This lack of mechanistic detail and the
corresponding biomarkers reporting the activity of different
parts of these mechanisms prevent the proper characterization

of the response across different tumor regions and patients.
Catalogues of response variants together with the associated
individual patient profiling would overcome tumor
heterogeneity issues, but only the integration of these
mechanisms with other relevant processes taking place in the
TME would consider all the components involved in the
clinical outcome.

Identification of biomarkers in the perturbed TME
Biomarkers of an antitumor response evaluated on baseline
(unperturbed) tumor samples may have a limited predicting
value due to stochastic events. Alternatively, in order to
anticipate whether a patient will be benefited from a specific
treatment, it has been proposed the identification of the so-
called dynamic biomarkers [100]. The basic idea is that the
evaluation or identification of these dynamic biomarkers is
carried out early during treatment, which enables the detection
of patients who may benefit from continuing or not. This
strategy is arguably more robust to predict the patient response
and despite it is suboptimal (pre-treatment detection of
biomarkers would be better if accurate), it could be of great
value. Moreover, these dynamic markers may be better
indicators of the underlying mechanism of action of the
treatment or even being actionable biomarkers; they conform
the dynamic network biomarkers or leading subnetworks that
move first after treatment toward the final state, hopefully, an
immunocompetent attractor. In the context of immune
checkpoint blockade with CTLA4-specific antibody, this
strategy allowed to identify two response-associated modules
and NOS2 as hub in mice [101]. The relevance of this finding
was validated by pharmacologically inhibiting or enhancing
the biological activity of NOS2 and observing the
corresponding changes in responses rates to CTLA4 blockade.

Identification of biomarkers reporting the activity of response
mechanisms is essential to deal with both intra- and inter-
tumor heterogeneity, but the tumor architecture has to be taken
into account, as different tumor regions may have different
response. Unexpected drug resistances may appear if some
parts of the tumor that are not sensitive to the treatment take
over tumor growth, as they are favored by the drug selective
pressure, and dramatically change the clinical outcome. This
issue would suggest that, similarly to the unperturbed TME
case, the biomarker evaluation should be carried out in
different regions of the TME, which demands an experimental
platform where such a thing is possible.

Using computational modelling to assist on the drug
design
Computer-aided drug design (CADD) methods, including
modeling techniques, have been used for decades and
extensively reviewed recently [102]. Some of these methods
neglect the underlying action mechanism or even the molecular
target, such as those focused on detecting similarities to
previously known active ligands. However, nowadays, modern
targeted cancer therapy development has two components:
figuring out what mechanism or combination of mechanisms
we want to target and the design of the appropriate molecules
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for this purpose. In this review we focus on this more
mechanistic and systems-oriented approach, and, in particular,
on single and combined target discovery; we just briefly
mention the main drug design methods for completeness, as the
molecular docking of ligand and targets is also a modeling
technique used in cancer research.

Drug design
CADD methods has played a relevant role for decades [102].
These methods can be classified in structure-based and ligand-
based approaches. In structure-based approaches, the
information about the structure of both ligands and targets is
relevant, and they rely on 2D or 3D molecular modelling.
Structure-based approaches include protein-ligand docking
[103,104], pharmacophore [105], and de novo ligand design
methods [106,107]. Ligand-based methods only use ligand
information, and the activity of new molecules is predicted
based on the similarity to previously known active ligands
[108,109]. It is worth mentioning that the same methods used
to predict activity could be used to predict toxicity, drug
metabolism and pharmacokinetics [110,111].

Cancer Vaccination and Neoantigen Prediction
with the Assistance of Computational Modelling
Approaches
Cancer vaccination has recently migrated from targeting
tumor-associated self-antigens, i. e., proteins that may be
aberrantly expressed and presented in cancer cells, to targeting
neoantigens result of tumor specific somatic mutations.

The process of selecting immunogenic peptides starts with the
identification of somatic mutations by exon sequencing of a
cancer biopsy and normal tissue, and transcriptome data is also
frequently used to estimate and select the most abundant
antigens, assuming antigen abundance as necessary condition
to induce an effective immune response. By doing so, some
suitable neoantigen candidates can be identified, but still the
key question is whether or not these mutated proteins will be
processed into 8- to 11-residue peptides by the proteosome,
transported into the endoplasmic reticulum and loaded into the
major histocompatibility complex class I (MHC-I) for
recognition by CD8+ T cells.

There exist computational methods based on artificial neural
networks focused on modeling antigen processing
(NetChop[112]) and peptide transport (NetCTL [113]), but
most efforts are directed to model and predict which peptides
will bind the MHC-I (NetMHC [114,115]). It is worth noting
here that future directions should arguably include predicting
MHC-II binders, which is essential for CD4+ T cells antitumor
response.

It is worth mentioning here the Tumor Neoantigen Selection
Alliance, an international initiative involving researchers from
30 universities, non-profit institutions and companies, which
attempt to address the challenges of developing and
benchmarking software tools for predicting MHC binders.

Models of adoptive cell transfer immunotherapy
In the realm of adoptive cell transfer, dendritic cells are a
promising immunotherapy tool for boosting the adaptive
immune system. DePillis et al. [116] developed a mathematical
model based on differential and delay-differential equations to
describe the interactions between dendritic cells, T effector
cells, and tumor cells in melanoma. This model considers
immune cells trafficking between lymph, blood and tumor
compartments, and it was used to suggest dose, location and
schedule modifications to enhance immunotherapy efficacy.

Models to Improve Treatment Modalities
Treatment efficacy, including surgery, radio- and chemo-
therapy may benefit from complementary treatments. There
exist computational modeling approaches to study treatment
related events in the attempt to maximize treatment efficacy

For example, Kim et al. [117] proposed a multi-scale hybrid
model centered on microRNAs that balance cell proliferation
and migration under different microenvironmental conditions
in glioblastoma. This model suggested that post-surgery
injection of combinations of chemoattractants and glucose
reduces the diffusive spread of residual cells after tumor
removal, leading to a more effective therapeutic strategy to
eradicate tumor cells.

Hawkins-Daarud et al. [118] proposed an ODE-based model to
describe the intratumor edema under anti-angiogenic
treatments in glioma. This model integrates different cell
populations, (normoxic, hypoxic and necrotic cells) competing
for space. Simulated glioma growth suggested that anti-
angiogenic treatment could serve as a surrogate for steroids,
which was supported by comparison with real magnetic
resonance images

Rejniak et al. [119] developed a computational model of
interstitial transport that integrate the biophysical properties of
the tumor tissue in order to describe penetration and efficacy of
therapeutic agents.

Roadmap for the Future
The new era of personalized oncology demands an
experimental platform closer to the actual TME of individual
patients, and the assistance of computational models in the
experimental design in order to make the development of novel
and personalized therapies cost-effective.

To this end, both the experimental platform and the
computational models have to capture the complexity and
heterogeneity of the TME, which requires the preservation of
TME architecture and the consideration of the spatiotemporal
distribution of its constituent elements. For this purpose, we
highlight here four main features that models of the TME
should ideally exhibit: multicellular deconvolution,
spatiotemporal compartmentalization, multiscale, and, the
integration of both cancer-driving and response mechanisms.

Concerning the model deconvolution; one of the pitfalls when
modeling the TME from bulk-tumor experimental data is that
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the information from different cell types, including different
subpopulations of cancer and stromal cells and phenotypic
variants, is merged in an average signal, which hinders the
identification mechanisms and biomarkers. The analysis of
great number patients by integration of multiple data sets from
bulk-tumor experiments and the computational deconvolution
[120] of the constituent cells of the TME can overcome this
problem and help on the stratification of the population of
patients and characterization of the different modes of
antitumor immune response [29]. However, this computational
deconvolution requires profiling the constituent cells of the
TME, which is usually done by using purified cell types. A
better profiling of individual cells obtained from experimental
systems closer to the in vivo reality and that captures cell type
heterogeneity is required for a proper model deconvolution.

Alternatively, single cell technologies, such as single cell
RNA-seq, can be used for model deconvolution. However,
these technologies face a new generation of problems. In
particular, this technology allows the identification of a myriad
of subpopulation of cells, some of them resulting from
potential confounding factors, such as the cell cycle and other
oscillatory cellular processes [28]. Clustering groups of cells
functionally similar based on a heterogeneous transcriptional
profile refers to the problem of connecting transcriptome and
phenotype, and despite it is not clear in what extent this
problem has to be addressed in order to assemble reliable
multicellular models from single cell technology by
"reconvolution" or horizontal integration, arguably, techniques
to filter out major confounding factors have to be developed
[28].

Concerning the spatiotemporal compartmentalization;
depending on the intended purpose of the model, the
deconvolution or horizontal integration can be done at different
degree of granularity, such as cell subtypes, types, lineages or
any sort of clusters according to the scientific question. Some
modeling formalisms, such as ABMs (see Table 1), are
remarkably flexible for that purpose. However, the
spatiotemporal distribution of the elements of the TME has to
be taken into account, as the total or relative composition of
TME cell populations may change overtime and differ in
different regions of the tumor. For example, the total count of
TIL may be very different before and after treatment, and
peripheral TIL (excluded infiltrate) have to be explicitly
distinguished by the model from internal TIL, or the response
to immunotherapy could be wrongly predicted.

Apart from this multicellularity and spatiotemporal
compartmentalization, which refer to horizontal data
integration, there is another type of integration that is required.
In both the unperturbed and the perturbed TME, only certain
level of mechanistic description would allow making
predictions robust across different patient datasets, as
differences in these underlying mechanisms can be
characterized, monitored and explicitly considered by the
model. That implies a vertical integration of different levels of
complexity to result in the so-called multiscale models, being
the main difficulty in this integration for known mechanisms
establishing a linkage between these levels or scales, which

may operate, for example, at different orders of magnitude in
time and space [27]. However, a great deal of these
mechanisms is not known. A great effort has to be done in this
direction and to identify suitable biomarkers that report the
activity of relevant mechanisms, which may differ across
patients or even tumor regions.

Despite traditionally, the unperturbed (untreated) and perturbed
(treated) TME has been studied separately. Models of an
unperturbed TME are usually constructed to describe cancer-
driving mechanisms. On the other hand, models of a perturbed
TME are usually applied to describe or simulate the
mechanism of action of specific perturbations, such as
treatments, and to identify novel potential therapeutic targets
and biomarkers. However, from a translational point of view, it
seems reasonable that integrative models including both
cancer-driving and response mechanisms are required for
practical clinical applications, as both types of mechanisms can
be strongly intertwined, and the characterization of both in a
given patient would be relevant to predict a clinical outcome.

Finally, a word of caution about modeling to assist on the
experimental design. A major difficulty in the model
construction using experimental data is that explaining a given
output or set of experimental readouts as a function of a given
initial conditions is often an underdetermined problem,
implying that the model inference problem does not have a
unique solution [121], which means that the model is not
inferable from the data. However, models can also be
interrogated to identify the minimal set of additional
perturbation experiments required to render a non-inferable
model into an inferable one in order to address specific
questions or predictions [122]. Consequently, it is reasonable to
envision future TME modeling efforts as an iterative and
collaborative endeavor between experimentalist, clinicians and
computational biologists, rather than a one-shot effort.

Conclusions
Modeling the TME has to deal with the intrinsic intra- and
inter- tumor heterogeneity and complexity due to its
multicellular nature, tissue architecture, and differences across
patients. These heterogeneity and complexity have to be
captured, first of all, by the biological model and experimental
assays used to construct the mathematical/computational
model, and secondly, by the adopted modeling formalism,
which should consider the spatiotemporal distribution of the
constituent elements of the TME. Modern ex vivo and
organoid-based experimental platforms attempt to provide
biological systems close to the actual TME of the patient,
which arguably will result into more useful computational
models from a translational perspective. In addition, single-cell
high throughput technologies promise the deconvolution of the
experimental information, which was previously derived
computationally from bulk-tissue experiments.

However, the era of personalized medicine faces new
challenges; modern TME computational models require a
vertical integration of different sources of-omics, phenotypical
and clinical data, which yields multiscale models, and a
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horizontal integration of deconvoluted information, which
yields multicellular models.

Such multiscale and multicellular models capable to anticipate
response to single and combined treatments in individual
patients would require and integrative approach merging
mechanistic description of both the unperturbed and perturbed
TME, which refer to the characterization of the tumor in the
absence and presence of treatments, respectively. The
mechanistic description of such integrative model, together
with patient profiling based on these mechanisms would allow
customizing or fine-tuning a general model to specific patients
or groups of patients, in order to design tailor-made therapies
and successfully navigate the cancer landscape.
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