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Abstract

The aim of this study was to investigate the effects of insulin therapy on glucagon in patients with newly
diagnosed Type 2 Diabetes (nd-T2DM patients). We recruited 93 nd-T2DM patients, including 45 non-
obese patients and 48 obese patients. A 100 g bread meal test was performed before and after insulin
therapy, and glucagon levels were measured before and after the experiment. Compared with the control
group, the serum glucagon levels before treatment in both the obese and non-obese nd-T2DM patients
were significantly higher (P=0.001). After treatment, the serum glucagon levels in the nd-T2DM patients
had significantly decreased (P=0.001), but they were still higher than those in the control group
(P=0.001). Additionally, the area under the curve of serum glucagon and postprandial glucagon levels in
the non-obese nd-T2DM patients decreased significantly (P=0.001 and P<0.01, respectively). The serum
glucagon level in the obese nd-T2DM patients decreased non-significantly (P>0.05). Insulin therapy
improved serum glucagon levels in nd-T2DM patients. The serum glucagon level in the non-obese nd-
T2DM patients improved significantly, but that in the obese nd-T2DM patients did not. The CP levels in
the non-obese T2DM group at 30 min (P=0.003), 60 min (P=0.001), 120 min (P=0.001), and 180 min
(P=0.001) after treatment had significantly increased compared to that before treatment. The CP levels
in the obese T2DM group at 120 min (P=0.001) and 180 min (P=0.001) after treatment had significantly
increased compared to that before treatment. This improvement might be related with a potential
association between T2DM and obesity.
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Introduction
Type 2 Diabetes Mellitus (T2DM) is a common metabolic
disease characterized by a decline in insulin sensitivity and
relative insulin insufficiency-induced hyperglycaemia [1].
Pancreatic β-cells secrete insulin, which is dependent on blood
glucose levels. Insulin secretion is also influenced by paracrine
interactions with surrounding cells, mainly α-cells and γ-cells.
In normal physiological processes, stable fasting (basal) insulin
and glucagon levels are maintained within a certain range, and
insulin and glucagon work together to maintain stable blood
glucose levels after an oral bread meal test. Patients with
T2DM have defects in the secretion of both insulin and
glucagon; they have low or high basal insulin levels, but their
basal glucagon levels are increased or remain unchanged [2,3].
After the bread meal test, insulin is insufficiently secreted, and
peak secretion is delayed; however, glucagon levels
inappropriately decrease or increase [4-7]. Patients with T2DM
and high basal insulin levels are often obese [8], but those with

low basal insulin levels are usually non-obese. In addition to
the abnormal secretion of insulin, the abnormal secretion of
glucagon plays an important role in the occurrence and
development of T2DM [9-15]. Abnormal glucagon secretion
has different effects in non-obese and obese patients with
T2DM. In non-obese patients with T2DM, basal glucagon
levels are high or relatively normal [16,17], but postprandial
glucagon levels are high [17]. Glucagon levels are believed to
increase because fasting hyperglycaemia impairs glucagon
secretion suppression, which is mediated by blood glucose
levels [18]. Additionally, some studies reported that high blood
glucose directly stimulates the secretion of glucagon [19].
Postprandial glucagon secretion is mainly regulated by insulin
[20]. The main evidence for this is that, after consuming mixed
meals, glucagon secretion is inhibited in individuals with
normal insulin secretion, while the glucagon level increases in
individuals whose postprandial insulin level does not increase,
such as patients with type 1 diabetes mellitus [21]. In obese
patients with T2DM, basal glucagon levels are higher [17], and
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the increase in bread meal-stimulated glucagon levels are more
significant [17] than in non-obese patients with T2DM.
Furthermore, the basal and postprandial glucagon levels are
higher than in non-obese patients with T2DM [16,17,22,23].
Other studies suggested that the combination of T2DM and
obesity is not related with the basal and postprandial glucagon
levels observed in non-obese patients with T2DM [10]. During
the treatment of patients with newly diagnosed T2DM (nd-
T2DM), a variety of drugs can improve insulin secretion and
basal and postprandial insulin levels [24,25]. Direct insulin
therapy for patients with T2DM can not only directly improve
insulin deficiency but also decrease glucagon levels; however,
it cannot restore glucagon levels to normal levels [26-28]. It is
still unclear whether insulin affects glucagon levels in non-
obese and obese nd-T2DM patients. Therefore, this study
investigated the effects of insulin therapy on glucagon levels in
non-obese and obese nd-T2DM patients.

Materials and Methods

General data
A total of 93 nd-T2DM patients hospitalized in the Department
of Endocrinology in the Third Affiliated Hospital of Anhui
Medical University between February 2012 and November
2015 were selected; they had not received any medications.
T2DM was confirmed for all patients according to the
diagnostic and typing criteria for diabetes proposed by the
World Health Organization (WHO) in 1999. Body Mass Index
(BMI) was defined as weight (kg)/height (m2). According to
the standards of obesity defined by the WHO guidelines for the
Asian Pacific population (WHO/IASO/IOTF, 2000), these
patients were divided into two groups: (1) non-obese T2DM
group (BMI<25 kg/m2), which included 45 patients aged 37-75
years, and (2) obese T2DM group (BMI ≥ 25 kg/m2), which
included 48 patients aged 21-77 years. This study was
conducted in accordance with the Declaration of Helsinki. This
study was conducted with approval from the Ethics Committee
of Anhui Medical University. Written informed consent was
obtained from all participants. None of the patients had stress;
cancer; autoimmune diseases; diabetic ketoacidosis; a
hyperosmolar hyperglycaemic state; severe heart, liver, or lung
diseases; or positive serum insulin antibodies and/or glutamic
acid decarboxylase antibodies. Twelve age- and sex-matched
healthy subjects were also included. General information about
the study subjects is shown in Table 1.

Treatment of patients
Height and body weight were measured in the morning for all
subjects. The serum Total Cholesterol (TC), Triglyceride (TG),
and Haemoglobin A1 (HbAlC) levels were determined after
sampling venous blood. A 100 g bread meal test was then
performed, after which venous blood was sampled to measure
blood glucose, C-Peptide (CP), and glucagon levels at different
times (after fasting (T0) and 30 min (T1), 60 min (T2), 120
min (T3), and 180 min (T4) after the bread meal test). After
admission, Novo Rapid 30 (insulin as part 30 injection) or

glargine plus lispro insulin therapy was administered, and the
dose was adjusted according to the blood glucose monitoring
results, which were obtained using fingertip capillary blood
samples. After glycaemic control was achieved (average
treatment time, 13.5 ± 3.6 days), the 100 g bread meal test was
performed after an overnight fast, and the indexes were
measured again. This study applied individual glucose
reducing programs; therefore, if some patients presented with
symptoms of hypoglycaemia after achieving good blood
glucose control, the blood glucose control range could be
widened appropriately (≤ 8 mmol/l). Blood glucose was
measured using the glucose oxidase method using venous
blood samples and monitored using the Sure Step blood
glucose meter (Johnson and Johnson, USA) for fingertip trace
glucose. CP levels were detected using chemiluminescent
immunoassay kits (Weifang 3V Bioengineering Group Co.,
Ltd., China). To measure glucagon, 2 ml venous blood was
placed into a special anti-coagulated tube and stored at -18˚C
after the plasma separated. Then, plasma glucagon levels were
measured using radioimmunoassay kits (Atom Hi-tech Co.
Ltd., China).

Statistical analysis
All data are expressed as mean ± Standard Deviation (SD). The
Area Under the Curve (AUC) was calculated using the
trapezoidal method, the independent samples t-test was used
for intergroup comparisons, and the paired t-test was used for
intragroup comparisons. P>0.05 was considered statistically
significant. We used SPSS version 16.0 (SPSS Inc., Chicago,
IL, USA) for statistical analysis.

Results

Comparison of general conditions and related indexes
before treatment
Except for age (P=0.936), the values for the remaining indexes
in the T2DM group were all significantly higher than those in
the control group (P=0.001). When comparing the non-obese
T2DM group and control group, there were significant
differences in HbAlC levels (P=0.001) and BMI (P=0.001), but
no significant difference in age (P=0.585). The differences
between the obese T2DM group and control group were also
significant for HbAlC levels (P=0.001) and BMI (P=0.001),
but not for age (P=0.718). When comparing the obese and non-
obese T2DM groups, there were no significant differences in
age (P=0.527) or HbAlC levels (P=0.432), but a significant
difference in BMI (P=0.001) was observed. TC and TG levels
in the obese and non-obese T2DM groups were significantly
higher than in the control group (P=0.001, Table 1).

Comparison of the area under the curve (AUC) of C-
peptide and glucagon before and after treatment
Before treatment, the AUCSum (Sum of the Area Under the
Curve) of CP in T2DM patients was significantly lower than
that in the control group (P=0.001). After treatment, the
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AUCSum of CP in T2DM patients was lower than that in the
control group (P=0.004), but significantly higher than that
before treatment (P=0.001, Figure 1A). Before treatment, the
AUCSum of glucagon in T2DM patients was higher than that in
the control group (P=0.001). After treatment, the AUCSum of
glucagon in T2DM patients was significantly higher than that
in the control group (P=0.001) and significantly lower than that
before treatment (P=0.001, Figure 1B). The AUCSum of CP
before treatment in the non-obese T2DM group was
significantly lower than that in the control group (P=0.001).
After treatment, the AUCSum of CP was lower than that in the
control group (P=0.003), but significantly higher than that
before treatment (P=0.001). Pre-treatment, the AUCSum of CP
in the obese T2DM group was significantly lower than that in
the control group (P=0.007). Post-treatment, the AUCSum of
CP was still lower than that in the control group (P=0.025), but
significantly higher than that pre-treatment (P=0.001, Figure
2A). Before treatment, the AUCSum of glucagon in the non-
obese (P=0.001) and obese (P=0.001) T2DM groups were
significantly higher than that in the control group. After
treatment, the AUCSum of glucagon in the non-obese T2DM
group remained significantly higher than that in the control
group (P=0.016), but decreased significantly compared to that
before treatment (P=0.004). After treatment, the AUCSum of
glucagon in the obese T2DM group remained significantly
higher than that in the control group (P=0.002) and was not
significantly different compared to that before treatment
(P=0.05, Figure 2B).

Figure 1. AUCSum of CP and glucagon in T2DM patients before and
after the treatment, vs. control group *P<0.01 vs. before the treatment
#P<0.01.

Figure 2. AUCSum of CP and glucagon in T2DM patients after bread
meal test before and after the treatment. Compared with the control
group before and after the treatment, a: P<0.05, b: P<0.01;
comparison within the experimental groups before and after the
treatment, c: P<0.05, d: P<0.01.

Comparison of blood glucose, C-peptide, and
glucagon levels at different times before and after
treatment
Before treatment, the blood glucose levels in the non-obese and
obese T2DM groups were significantly different from that in
the control group at different times (P=0.001), but the
differences between the non-obese and obese T2DM groups
were not significant (P (T0)=0.713, P (T1)=0.968, P
(T2)=0.580, P (T3)=0.197, P (T4)=0.263; Table 2). Before
treatment, the CP levels in the non-obese T2DM group showed
significant differences when compared with the control group
at T1 (P=0.001), T2 (P=0.001), and T3 (P=0.001). The CP
levels in the obese T2DM group were also significantly
different from those in the control group at T1 (P=0.001), T2
(P=0.001), and T3 (P=0.040, Table 3). The glucagon levels in
the non-obese and obese T2DM groups before treatment
showed significant differences when compared with the control
group at T1 (P=0.001, 0.001, respectively), T2 (P=0.001,
0.001, respectively), T3 (P=0.001, 0.001, respectively), and T4
(P=0.004, 0.002, respectively), but not at T0 (P=0.613, 0.087,
respectively); however, the differences between the non-obese
and obese T2DM groups were not significant (P (T0)=0.382 P
(T1)=0.861, P (T2)=0.642, P (T3)=0.575, and P (T4)=0.680;
Table 4).

After treatment, the blood glucose levels in the non-obese and
obese T2DM groups were still significantly higher than that in
the control group (P=0.001), but had significantly decreased
compared to that before treatment (P=0.001, Table 2). The CP
levels after treatment in the non-obese T2DM group were
significantly lower than those in the control group at T1
(P=0.001), T2 (P=0.001), and T4 (P=0.006), but had
significantly increased at T1 (P=0.003), T2 (P=0.001), T3
(P=0.001), and T4 (P=0.001) compared with that before
treatment. The CP levels after treatment in the obese T2DM
group were significantly lower than those in the control group
at T1 (P=0.001), T2 (P=0.001), and T4 (P=0.007), but had
significantly increased at T3 (P=0.001) and T4 (P=0.001, Table
3) compared with that before treatment. The glucagon levels
after treatment in the non-obese T2DM group were
significantly higher than those in the control group at T1
(P=0.031), T2 (P=0.001), and T3 (P=0.016). The glucagon
levels after treatment in the non-obese T2DM group had
significantly decreased at T1 (P=0.007), T2 (P=0.009), T3
(P=0.010), and T4 (P=0.024) compared with that before
treatment. The glucagon levels after treatment in the obese
T2DM group were significantly higher than those in the
control group at T1 (P=0.001), T2 (P=0.001), and T3
(P=0.009). The glucagon levels in the obese T2DM group after
treatment also had significantly decreased at T4 (P=0.022)
compared with that before treatment (Table 4).
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Index Control T2DM P Obese T2DM P Non-obese T2DM P

Age (years) 54.85 ± 11.62 54.95 ± 11.53 0.936a 54.45 ± 12.24 0.718a 55.50 ± 10.78 0.585a

0.527b

Gender (M/F) 12 (7/5) 93 (59/34) - 48 (32/16) - 45 (27/18) -

BMI (kg/m2) 22.25 ± 1.65 24.45 ± 3.08a 0.001a 26.82 ± 1.78a 0.001a 21.80 ± 1.77b 0.001a

0.001b

TG (mmol/l) 1.23 ± 0.56 2.47 ± 2.11a 0.001a 2.57 ± 1.80a 0.001a 2.28 ± 2.37a 0.001a

0.381b

TC (mmol/l) 4.6 ± 1.03 5.06 ± 1.30a 0.001a 5.21 ± 1.44a 0.001a 4.93 ± 1.13a 0.001a

0.355b

HbAlC (%) 4.95 ± 0.67 10.07 ± 2.57a 0.001a 10.30 ± 2.57a 0.001a 10.44 ± 2.55a 0.001a

0.432b

Note: Comparison between the obese T2DM group and the control group: aP<0.01, comparison between the obese T2DM group and the non-obese T2DM group:
bP<0.01.

Table 2. Blood glucose at different time points before and after the treatment.

Control Non-obese T2DM Obese T2DM

Before After Before After

Blood glucose 0 4.71 ± 0.30 9.91 ± 2.58b 7.31 ± 1.03bd 9.72 ± 2.50b 7.10 ± 1.18bd

Pb=0.001 Pb=0.001, Pd=0.001 Pb=0.001 Pb=0.001, Pd=0.001

30 5.85 ± 0.28 13.27 ± 3.00b 10.13 ± 1.83bd 13.25 ± 3.04b 9.80 ± 2.08bd

Pb=0.001 Pb=0.001, Pd=0.001 Pb=0.001 Pb=0.001, Pd=0.001

60 7.07 ± 0.22 17.45 ± 3.77b 13.59 ± 2.48bd 17.03 ± 3.59b 12.89 ± 2.58bd

Pb=0.001 Pb=0.001, Pd=0.001 Pb=0.001 Pb=0.001, Pd=0.001

120 6.00 ± 0.31 19.85 ± 4.55b 15.44 ± 3.19bd 18.64 ± 4.44b 14.14 ± 3.21bd

Pb=0.001 Pb=0.001, Pd=0.001 Pb=0.001 Pb=0.001, Pd=0.001

180 4.87 ± 0.32 18.03 ± 5.22b 14.34 ± 3.76bd 16.84 ± 4.99b 12.01 ± 3.66bd

Pb=0.001 Pb=0.001, Pd=0.001 Pb=0.001 Pb=0.001, Pd=0.001

Note: Compared with the control group before and after the treatment, aP<0.05, bP<0.01; comparison within the experimental groups before and after the treatment,
cP<0.05, dP<0.01.

Table 3. CP at different time points before and after the treatment.

Control Non-obese T2DM Obese T2DM

Before After Before After

CP 0 0.61 ± 0.12 0.52 ± 0.27 0.66 ± 0.30 0.68 ± 0.33 0.56 ± 0.31

30 1.80 ± 0.32 0.73 ± 0.37b 1.00 ± 0.47bd 0.95 ± 0.47b 0.87 ± 0.46b

Pb=0.001 Pb=0.001, Pd=0.003 Pb=0.001 Pb=0.001

60 2.66 ± 0.59 1.01 ± 0.54b 1.46 ± 0.70bd 1.33 ± 0.78b 1.37 ± 0.71b

Pb=0.001 Pb=0.001, Pd=0.001 Pb=0.001 Pb=0.001

120 2.42 ± 0.58 1.46 ± 0.91b 2.22 ± 1.30d 1.78 ± 1.00a 2.02 ± 1.10d

Pb=0.001 Pd=0.001 Pa=0.040 Pd=0.001
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180 1.60 ± 0.36 1.42 ± 0.82 2.18 ± 1.24bd 1.82 ± 1.42 2.14 ± 1.06bd

N.S. Pb=0.006, Pd=00.001 N.S. Pb=0.007, Pd=0.001

Note: Compared with the control group before and after the treatment, aP<0.05, bP<0.01; comparison within the experimental groups before and after the treatment,
cP<0.05, dP<0.01. N.S: No Significance

Table 4. Glucagon at different time points before and after the treatment.

Control Non-obese T2DM Obese T2DM

Before After Before After

Glucagon 0 108.52 ± 9.19 111.46 ± 34.49 101.48 ± 28.90 117.33 ± 29.90 110.60 ± 36.22

30 118.97 ± 9.72 151.88 ± 54.65b 131.93 ± 34.53ad 153.61 ± 40.02b 142.36 ± 39.82b

Pb=0.001 Pa=0.031, Pd=0.007 Pb=0.001 Pb=0.001

60 118.46 ± 9.43 155.89 ± 47.62b 140.52 ± 37.16bd 160.09 ± 39.22b 150.89 ± 49.78b

Pb=0.001 Pb=0.001, Pd=0.009 Pb=0.001 Pb=0.001

120 110.32 ± 7.68 141.58 ± 50.67b 126.34 ± 40.53ac 136.39 ± 37.61b 128.67 ± 44.22b

Pb=0.004 Pa=0.016, Pc=0.010 Pb=0.001 Pb=0.009

180 101.63 ± 7.33 120.54 ± 39.32b 109.43 ± 32.91c 117.55 ± 29.86b 107.51 ± 32.34c

Pb=0.001 Pc=0.024 Pb=0.002 Pc=0.022

Note: Compared with the control group before and after the treatment, aP<0.05, bP<0.01; comparison within the experimental groups before and after the treatment,
cP<0.05, dP<0.01.

Discussion
This study mainly investigated the effects of insulin therapy on
glucagon levels in non-obese and obese T2DM patients. In
most patients with T2DM, two metabolic defects can occur:
insulin resistance and/or insulin secretion deficiency. Insulin
deficiency can reduce the inhibition of glucagon. Previous
studies [29-31] showed that endogenous insulin may act
directly on the insulin receptors of α-cell membranes and
inhibit the secretion of glucagon through the PI 3-kinase/Akt
signalling pathway. Alternatively, it may indirectly reduce the
sensitivity of the α-cell KATP channels [32] and strengthen the
γ-amino butyric acid pathway [30] to inhibit glucagon
secretion. In the present study, the overall glucagon levels in
the T2DM group were higher than those in the control group,
which was consistent with the results of previous studies [33].
However, there were no differences in basal glucagon levels
among the patients with T2DM. This may be related with the
lack of significant differences in the basal insulin level,
compared with the control group. Patients with T2DM who
have better blood glucose control have small variations in
fasting glucagon levels, but those with poor blood glucose
control or ketosis have significantly higher basal glucagon
levels than healthy people [7,34]. The postprandial glucagon
levels in the patients with T2DM were higher than that in the
control group. Postprandial glucagon levels tend to increase
throughout the mixed meal test [16] or oral glucose tolerance
test [4]. The increase in postprandial glucagon could be related
with impaired insulin secretion, and the decrease in
postprandial insulin secretion impairs the inhibitory effects on

glucagon [35-38]. In the present study, patients with T2DM
had a deficiency in postprandial insulin secretion, supporting
the findings of previous studies.

Insulin therapy is a shared method for treating T2DM; as
observed in previous studies, the present study found that the
glucagon levels decreased after insulin treatment in patients
with T2DM [26,27]. The results suggest that insulin treatment
could reduce glucagon levels in patients with T2DM. This
phenomenon is related with the direct and indirect actions of
endogenous insulin on the islet α-cells. The administration of
exogenous insulin prevents the inhibitory action of endogenous
insulin on glucagon secretion by α-cells. Similar to previous
studies, in the present study, after treatment using exogenous
insulin, endogenous insulin secretion was restored to some
extent, and this recovery was reflected by the elevated level of
CP [39,40]. The recovery of endogenous insulin may enhance
the inhibition of glucagon secretion via the PI 3-kinase/Akt and
γ-amino butyric acid pathways, as already discussed. Certain
studies [32,41] also reported that after treatment using
exogenous insulin, insulin secreted by in vivo β-cells increased,
and this increase may cause the secretion of Zn2+, which has
inhibitory effects on glucagon.

The relationship between glucagon and obesity is a popular
research topic. However, consensus regarding this relationship
has not yet been reached. An increase in glucagon levels might
be associated with obesity-related insulin resistance [42,43]. In
addition, obese people with normal glucose tolerance have
higher glucagon levels [22,44]. Changes in levels of leptin
[45,46] and inflammatory cytokines [22] associated with
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obesity-related insulin resistance could elevate glucagon levels.
The increase in gastric inhibitory polypeptide levels in obese
people with normal glucose tolerance and in patients with
T2DM after an oral glucose tolerance test might be related with
increased postprandial glucagon levels [17,34]. In obese
patients with T2DM, findings regarding glucagon levels differ.
In one study, the overall glucagon levels in obese patients with
T2DM were higher than those in non-obese patients with
T2DM [16]. In another study, there were no differences in the
basal and post-mixed meal test glucagon levels between obese
and non-obese individuals with T2DM [10]. In the present
study, both non-obese and obese patients with T2DM had
higher glucagon levels than the control group. The absolute
basal and postprandial glucagon levels in the obese patients
with T2DM at all the time intervals were slightly higher than
those in the non-obese patients with T2DM, but the differences
were not statistically significant. The results of the present
study may be related with the similar degrees of obesity (BMI
of 26.82 kg/m2 vs. 21.80 kg/m2).

The present study further analysed the effects of insulin
therapy on glucagon levels in non-obese and obese patients
with T2DM. After treatment, the glucagon levels overall and at
different postprandial time intervals in non-obese patients with
T2DM decreased significantly; however, in the obese T2DM
group, these levels did not decrease as much and were only
significantly different at T4. This decrease in the non-obese
patients with T2DM may be associated with the noticeable
recovery of endogenous insulin in non-obese patients with
T2DM. CP levels reflect endogenous insulin levels. After
treatment, CP levels in non-obese patients with T2DM
increased at all of the postprandial time intervals. The
increased CP levels suggest that the functions of in vivo β-cells
recovered, and glucose toxicity decreased to some extent.
However, insulin therapy did not significantly reduce the
glucagon level in obese patients with T2DM, which may be
related with insufficient recovery of the endogenous insulin
secretion [47]. In the present study, simple insulin therapy did
not significantly improve endogenous insulin secretion, and the
postprandial CP levels after treatment only showed statistically
significant improvements at T3 and T4.

In conclusion, non-obese and obese nd-T2DM patients have
lower insulin levels and higher glucagon levels than people
without T2DM. Insulin therapy can decrease glucagon levels.
A greater decrease in glucagon levels was observed in non-
obese patients with T2DM after treatment than in obese
patients with T2DM; the decrease was not statistically
significant for the obese patients with T2DM. After treatment,
CP levels increased. This increase mainly occurred in non-
obese patients with T2DM, and the changes for obese patients
with T2DM were not statistically significant. New treatments
or programs that decrease glucagon levels and increase CP
levels in obese patients with T2DM need to be investigated
further.
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