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Abstract

The study aimed to detect the total cholesterol Content of Erythrocyte Membranes (CEM) and plasma
Cholesterol Efflux Capacity (CEC), and to analyse its correlations with Acute Coronary Syndrome
(ACS), in attempt to explore the possible causes of increasing CEM in patients. One hundred and forty-
seven patients with Coronary Heart Disease (CHD) were enrolled, while 53 subjects with normal
coronary arteriography served as the control group. CEM, CEC, and conventional blood lipid
parameters were detected. CEM in the CHD group (138.63 ± 34.92 μg/mg) was significantly higher than
the control group (121.29 ± 24.04 μg/mg) (P<0.001). Further analysis revealed that CEM in ACS patients
was significantly higher than that in the SAP (Stable Angina Pectoris) group (P<0.001). CEC in the
CHD group (1.53 ± 0.40) was significantly lower than the control group (1.67 ± 0.47) (P=0.029). CEC
and CEM showed a significant negative correlation (r=-0.257, P<0.001), suggesting that the reduction of
CEC might result in an increase in CEM in ACS patients.
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Introduction
Acute Coronary Syndrome (ACS) constitutes a group of
clinical symptoms that are a serious threat to human health.
ACS is commonly characterized by acute myocardial ischemia.
Moreover, unstable coronary atherosclerotic plaques are a
basic pathophysiological feature of the syndrome.

Studies have shown that plaques with a lipid core proportion
greater than 40% are prone to rupture, and are known as
vulnerable plaques [1]. The lipid core in vulnerable plaques is
rich in free cholesterol, and contains up to 63% of Total
cholesterol (T-ch) [2]. Initially, it was generally accepted that
free cholesterol inside the lipid core was derived from
apoptotic macrophages. However, studies of the pathological
process of Coronary Heart Disease (CHD) showed that Red
Blood Cells (RBCs) may also be an important source of free
cholesterol in atherosclerotic plaques. Pasterkamp and Virmani
[1] found that the blood group antigen A was only expressed
on RBC membranes, suggesting that RBCs could enter the
plaques. Tziakas et al. [3] proposed that a strong correlation
exists between Content of Erythrocyte Membranes (CEM) and
ACS, independent from other clinical and risk factors. The
study proposed that increased CEM could reflect unstable
plaques in CHD patients.

Moreover, our previous studies showed that CHD patients
exhibited significantly increased CEM compared to the control

group, and the CEM in patients with ACS was significantly
higher than that in the patients with stable angina [4,5]. These
results suggest that CEM might serve as a reflective index for
the unstable plaques in CHD patients; however, the exact cause
of CEM elevation remains unclear.

Cholesterol metabolism in peripheral tissue cells is governed
by High-Density Lipoprotein-Cholesterol (HDL-C) Reverse
Cholesterol Transportation (RCT). Furthermore, HDL-C
transports excessive cholesterol in peripheral tissues back to
the liver for metabolism [6,7]. Previous large-sample
epidemiological studies suggested that plasma HDL-C level
was significantly negatively correlated with the occurrence of
HCD [8,9]. The NCEP ATP-III guidelines, published in 2001
recommended that treatment goals of Low Protein Lipoprotein
Cholesterol (LDL-C) be set in CHD patients to increase the
HDL-C level [10]. However, in recent years, a variety of
clinical practices have tried to increase plasma HDL-C
concentrations without any promising clinical results [11-13].
Therefore, using HDL-C levels as an index to evaluate the risk
of CHD has certain limitations and may not fully reflect the
functions of HDL-C [14]. Khera et al. [15] measured
Cholesterol Efflux Capacity (CEC) of serum HDL-C in CHD
patients for the first time. They found that CEC was negatively
correlated with the medial layer thickness of carotid arterial
intima and incidence of CHD, proposing that the CEC was the
best index to evaluate the HDL functions. Furthermore, Bhatt
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and Rohatgi [16] suggested that CEC might be a new target for
CHD treatment. We detected plasma CEC in CHD patients
[17], which was significantly reduced compared with the
control group, and found that CEC showed no significant
correlation with HDL-C. CEC reflects the RCT function
promoted by HDL-C in peripheral tissue cells. But whether
cholesterol in RBC is metabolized via the RCT pathway
remains unclear. Previous studies [4,5] found that CEM
showed no significant correlation with the serum HDL-C level;
however, the correlation between CEM and CEC remains to be
studied.

The transport mechanism of CEM is unclear, and our previous
studies revealed that the Apolipoprotein A-I (ApoA-I) content
had certain negative correlations with CEM [4]. ApoA-I is an
important initial factor that could mediate RCT; therefore, we
speculate that the reduction of CEC could result in elevated
CEM in CHD patients. This study detected CEC and CEM in
CHD patients, and performed a correlation analysis to explore
the possible reasons underlying an elevation in CEM as well as
the pathophysiological basis of CHD.

Subjects and Methods

Subjects
One hundred and forty-seven patients admitted to the
Department of Cardiology of the First Affiliated Hospital of
Anhui Medical University, from December 2012 to December
2013 due to chest pain or oppression, and diagnosed with CHD
according to the results of coronary angiography were selected
(42 patients with unstable angina and 105 with ACS). In
addition, 53 age- and sex-matched patients with atypical chest
pain, and cleared of CHD by coronary angiography were
selected and set as the control group. This study was conducted
in accordance with the declaration of Helsinki. This study was
conducted with approval from the Ethics Committee of Anhui
Medical University. Written informed consent was obtained
from all participants. The exclusion criteria were patients
previously diagnosed with CHD; with chronic blood diseases;
with excessive drinking history; with chronic hepatonephric
dysfunction and thyroid diseases; with autoimmune diseases;
with familial hyperlipidemia; with acute infectious diseases;
underwent surgery or with history of trauma within 3 months;
with abnormal RBC count (M: <4.0 or >5.5 × 1012/L; F: <3.5
or >5.0 × 1012/L) or abnormal haemoglobin (M: <120 g/L
female; or>160 g/L: <110 g/L or >150 g/L); being
administered with anti-inflammatory drugs or hormone
replacement therapy; with malignant cancers; previously, or
presently being administered with lipid-lowering drugs.

Detection of CEM
Detection of CEM was carried out by referring to our previous
studies [4,5]. Heparin-anticoagulant fasting blood sample was
collected (5 ml) and centrifuged at 4°C and 3000 rev/min for
10 min to precipitate the erythrocytes. The lower-layer red
blood cell suspension was added with 3-time isotonic NaCl
solution, washed, and centrifuged 3 times to separate RBCs.

After centrifugation at 4°C and 15000 g/min for 15 min, and
repeated washing and centrifugation, the white RBC membrane
sample was obtained. The Lowry assay was used to detect the
concentrations of RBC membrane proteins. The RBC
membrane lipids were extracted using the Folch procedure and
stored at -80°C. Thereafter, CEM was detected using the
enzymatic method with the ROCHE Modular DPP automatic
biochemical analyser (Roche, Swiss) in the biochemical lab of
the First Affiliated Hospital of Anhui Medical University.
CEM was expressed using the RBC membrane cholesterol/
membrane protein concentration.

Detection of CEC
Referring to Rothblat [18], the Apolipoprotein (ApoB)-free
plasma was prepared by adding PEG8000 (Sangon Biotech, PR
China). Thereafter, CEC was detected referring to our previous
study [17]. The J774 cells were seeded into 24-well cell culture
plates, followed by thermostatic incubation for 18 h; after the
cells fused and formed layers. The cell culture medium was
aspirated and 0.5 ml of 2 µCi/ml (1, 2-3 H) cholesterol (Perkin
Elmer, Fremont, USA) was then added into each well; the
tritiated cholesterol was then labelled into the J774 cells, and
following 24 h cultivation, the cells were rinsed twice with
PBS twice at room temperature. Thereafter, 0.5 ml of 0.3
mmol/ml cAMP (Sigma-Aldrich, San Francisco, USA)
upregulation solution was then added into each well, followed
by thermostatic incubation for 16 hours. After washing with
MEM-BSA and MEM, each well of the cell culture plates was
added with 0.5 ml of pre-formulated 2% standard serum-
containing MEM-HEPES medium, 2.8% sample serum-
containing MEM-HEPES, or serum-free MEM-HEPES for 4 h
cultivation. Thereafter, liquid scintillation counting was
performed to measure the radioactive cholesterol in the cells
and outflow into the medium. The outflow percentage was
calculated using the following equation: tritiated cholesterol in
the medium/(tritiated cholesterol in the medium+cells) ×
100%. Statistical HCEC was calculated using the calibrated
HDL-CEC, namely the ratio of the serum cholesterol efflux
percentage in the sample to the standard serum cholesterol
efflux percentage (unit: 1) so as to reduce the intergroup
difference. To correct for inter assay variation across plates, a
pooled serum control from 5 healthy volunteers was included
on each plate, and the values of the serum samples from
patients were normalized to this pooled value in subsequent
analysis. Each serum sample was tested three times.

Detection of conventional blood lipids
Triglyceride (TG), T-ch, LDL-C, HDL-C, ApoA-I, and ApoB
were detected using standard methods using the ROCHE
Modular DPP automatic biochemical analyser (Roche, Swiss),
in the biochemical lab of the first Affiliated hospital of Anhui
Medical University.

Statistical analysis
Normally distributed measurement data were expressed as
mean ± standard deviation, whereas data with skewed
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distribution were expressed as median and interquartile range.
The count data were expressed as a percentage. SPSS13.0 was
used for data analysis, with P<0.05 considered as significantly
different. Normality tests were performed for all the statistical
indicators. The intergroup comparison of count data was
carried out using the chi-square test. Choice of statistical
comparison of the measurement data was based on their
properties. If the data was normally distribution, the intergroup
averages were compared using the two-sample t-test.
Comparison of 3 groups was carried out using the one-way
analysis of variance test. If the data were not normally
distributed, the intergroup averages were compared using the
Wilcoxon rank-sum test. The correlation analysis among
indicators was carried out using the multiple linear regression
model.

Results

Comparison of clinical data among the patients
The clinical data of all patients are shown in Table 1. The
clinical baseline data and general blood lipid indicators of the
CHD and control groups showed no statistically significant
differences.

Intergroup comparison of CEM
Figure 1 shows the intergroup comparison of CEM. CEM in
the CHD group (138.63 ± 34.92 μg/mg) was significantly
higher than that in the control group (121.29 ± 24.04 μg/mg)
(P<0.001) (Figure 1A). Further analysis revealed that CEM in
the ACS group was significantly higher than that in the SAP
group (122.98 ± 25.76) (P<0.001); however, no significant
difference in CEM was found between the SAP group and the
control group (Figure 1B).

Figure 1. CEM levels between CHD and control groups (A); or SAP,
ACS and Control groups (B). Box plots represent median, quartiles,
and range values of cholesterol efflux capacity. ACS: Acute Coronary
Syndrome; SAP: Stable Angina Pectoris.

Intergroup comparison of CEC
Figure 2 shows the intergroup comparison of CEC. CEC in the
CHD group (1.53 ± 0.40) was significantly lower than that in
the control group (1.67 ± 0.47) (P=0.029) (Figure 2A). Further
analysis revealed that CEC in the ACS group (1.51 ± 0.38) was
significantly higher than that in the control group (P=0.019);
CEC in the SAP group (1.51 ± 0.43) was lower than that in the

control group; but there was no significant difference (Figure
2B).

Figure 2. Intergroup comparison of CEC levels between CHD and
control groups (A); or SAP, ACS and Control groups (B).

Correlations between CEM and conventional blood
lipid indices
Correlation analysis between CEM and blood lipid indices is
shown in Table 2. There was no correlation between CEM and
serum T-ch, TG, LDL-C, HDL-C, and ApoB; CEM was
negatively correlated with ApoA-I (r=-0.167, P=0.027) (Figure
3).

Figure 3. Correlation between CEM and ApoA-I. (n=200).

Figure 4. Correlation between cholesterol efflux capacity and CEM.
(n=200).
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Correlation analysis of CEC with CEM
CEM and CEC were negatively correlated (r=-0.257, P<0.001),
and the difference was statistically significant (Figure 4).

Table 1. Comparison of clinical data in patients with CAD and
Control groups. (n=200).

Variables CAD (n=147) Control (n=53) p value

Age, years 63 ± 10 61 ± 11 0.167

Men 69% 58% 0.15

Hypertension 54% 68% 0.073

Diabetes mellitus 16% 13% 0.67

Current smoker 49% 36% 0.1

T-ch, mmol/L 4.44 ± 1.26 4.55 ± 1.01 0.582

TG, mmol/L 1.42 (0.93-2.11) 1.46 (1.04-1.96) 0.91

HDL-C, mmol/L 1.12 (0.87-1.39) 1.46 (0.97-1.36) 0.382

LDL-C, mmol/L 2.61 ± 0.41 2.70 ± 0.91 0.628

ApoA-I, mg/L 1.18 ± 0.31 1.24 ± 0.30 0.263

ApoB, mg/L 0.82 (0.69-0.92) 0.78 (0.65-0.92) 0.564

Table 2. Correlation between CEM and serum lipids. (n=200).

Blood lipid index r p

T-ch, mmol/L -0.1 0.177

TG, mmol/L -0.043 0.558

LDL-C, mmol/L -0.062 0.412

HDL-C, mmol/L -0.13 0.083

ApoB, mg/L -0.094 0.213

ApoA-I, mg/L -0.167 0.027

Discussion
The results of this study revealed that: (1) CEM in CHD
patients was significantly higher than that in the control group,
and CEM in patients with ACS was significantly higher than
that in the SAP group. (2) CEC in patients with CHD was
significantly lower than that in the control group. Further
analysis revealed that CEC in patients with ACS was
significantly lower than that in the control group. Moreover,
CEC in the SAP group exhibited a declining trend compared to
the control; however, this difference was not statistically
significant. (3) CEC and CEM were significantly negatively
correlated. (4) The correlation analysis between CEM and
general blood lipid indices revealed that CEM was negatively
correlated with ApoA-I.

The rupture of an atherosclerotic plaque is considered
important in initiating ACS [19]. Recent studies have indicated
that blood vessel formation and intra-plaque hemorrhage play
essential roles in the occurrence and development process of

atherosclerotic plaque instability [20,21]. New blood vessels
are often nourished through the outer membrane, have
indiscriminate branches and immature endothelial conduits,
and are also prone to leaking.

This immature vasculature may be a cause of intraplaque
hemorrhage [19]. Once an intraplaque hemorrhage occurs, the
RBCs accumulate within the plaques, followed by
phagocytosis and decomposition by the macrophages, which
results in the cholesterol and phospholipids of the RBC
membranes being released [22]. The cholesterol accumulation
inside the plaques leads to the lipid core increasing, thus
promoting the instability of plaques. The aforementioned
studies suggested that RBCs, especially erythrocyte membrane
lipids, might be involved in the pathogenesis of ACS and
severe CHD. Tziakas et al. [3] reported CEM was related with
the pathogenesis of ACS, and independent from other risk
factors and clinical characteristics; therefore, the increase in
CEM was considered a marker to reflect the plaque instability
in ACS instead of reflecting atherosclerosis. It has also been
speculated that CEM might serve as a marker of atherosclerotic
plaque vulnerability. Our previous studies also confirmed that
the elevated CEM was independently correlated with ACS
[4,5]. A similar conclusion was reached in this study, which
indicates that increasing CEM may have an important role in
the progression of atherosclerotic plaque instability.

RCT results in the movement of cholesterol from the
peripheral tissues or cells into the liver for metabolism. In
addition, RCT is very important in protecting against
atherosclerotic diseases [23]. One key step in RCT is
cholesterol efflux from macrophages; therefore, CEC has
important protective roles against atherosclerosis [24]. A series
of experimental studies using genetically modified mice [25]
revealed that macrophage-specific cholesterol efflux and RCT
were significantly negatively correlated with the size of
atherosclerotic plaques, and exhibited more predictive values
than HDL.

Our previous study [17] showed that CEC in patients with
CHD was significantly reduced compared with that in the
control group, which is consistent with the findings of Khera et
al. [15] and Li et al., [26] whose studies of the cross sections in
CHD patients revealed that CEC was negatively correlated
with the occurrence of CHD. The present study again showed
that CEC in patients with CHD was reduced compared with
that in the control group.

The transport mechanism of CEM is still unclear. However, our
previous study showed that the ApoA-I content was negatively
correlated with CEM [4], which is similar to results obtained in
the present study. Our findings further showed that CEC was
significantly negatively correlated with CEM, but was not
correlated with HDL-C content. RCT is a cholesterol
transportation and metabolism process that consists of a variety
of biologically active molecules, during which HDL-C is
successively transformed from new-born pre-β1 HDL to
mature α-HDL. In addition, the mutual conversion and
metabolism of different HDL subclasses plays important roles
in RCT [27].
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Throughout RCT, the gradual metabolism of HDL-C was pre-
β1 HDL → pre-β2 HDL → HDL 3 → HDL2. Therefore, the
serum CEC level can be viewed as the index reflecting the
overall functional activities of HDL subclasses during RCT,
which in turn provides greater practical meaning compared to
single HDL-C concentration (HDL content). The results of this
study suggest that the CEC reduction in patients with CHD
might the cause of increasing CEM. The finding is useful as it
provides an alternative direction for future studies of causes of
increasing CEM in patients with ACS.

This study has some limitations. First, this was a single-center
study, and the sample size was limited. Therefore, the
reliability of the results requires confirmation by studies using
a larger sample size. Second, although this study showed that
CEC reduction might be the cause CEM increase in patients
with CHD. While this result was obtained by correlation
analysis, we believe further studies are warranted, which are
being carried out by our group. In addition, whether an
elevation CEM in might exhibit certain changes, such as a
change of its deformation abilities, still require further studies.
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