Clinical research of two anaesthesia methods in gynaecologic laparoscopic surgery.

Chunlei Zhang1, Yanhong Wang2*, Ling Qin2, Shuhuan Guo2

1Department of Anesthesiology, People’s Hospital of Henan Province, Zhengzhou, Henan Province, PR China
2Department of Gynaecology and Obstetrics, Zhengzhou Maternal and Child Health Care Hospital, Zhengzhou, Henan Province, PR China

Abstract

Objective: To compare the clinical efficacy and complications between epidural block combined with intravenous general anaesthesia and laryngeal mask combined with spinal epidural anaesthesia.

Methods: 70 cases of patients with Gynaecologic Laparoscopic Surgery from February 2013 to February 2015 were grouped randomly to two groups, including epidural group (Group I) and laryngeal mask (Group II), each group enrolled 35 patients. Group I utilized epidural block combined with intravenous general anaesthesia, Group II used laryngeal mask combined with spinal epidural anaesthesia. The data of HR, SpO\textsubscript{2}, PET CO\textsubscript{2} and MAP were recorded and compared before anaesthesia and at the 5 min, 20 min, and 45 min after pneumoperitoneum and 10 min after bleeding. Anaesthesia complications were also observed, to compare the effect of pneumoperitoneum on the respiratory function, circulatory function and complications in between the two groups.

Results: The interference after pneumoperitoneum in Group II was bigger than that in Group I, SpO\textsubscript{2} decreased, Pet-CO\textsubscript{2} increased. In group I, the HR was significantly accelerated, BP was significantly increased (p<0.05), and was significantly higher than group II (p<0.05) at the time of intubation, extubation and 5 min after extubation.

Conclusion: Due to epidural block combined with intravenous general anaesthesia could significantly reduce the stress reaction induced by pneumoperitoneum, less anaesthesia complications, smooth intraoperative blood flow. However, the laryngeal mask with combined spinal epidural anaesthesia for gynaecological laparoscopic surgery was also a safe and feasible method, because the general anaesthesia therapy dose are few than that in epidural group.

Keywords: Epidural anaesthesia, Intubation, Intravenous anaesthesia, Laryngeal mask, Spinal epidural anaesthesia, Laparoscopic surgery.

Accepted on June 22, 2016

Introduction

In 1980s, the Laparoscopic surgery was begun with the advantage of fewer traumas, safety, less complications, shorter recovery period. It has been developed rapidly [1,2]. In order to meet the requirements of the operation and to eliminate the anxiety and fear, so that patients could stay in good condition, endotracheal intubation general anaesthesia were the traditional anaesthesia methods [3,4]. A safety, steady and rapid recovery was the key to the process of anaesthesia in operation. In our hospital, since the development of gynaecological laparoscopic surgery, 70 cases of such patients were treated with epidural block combined with tracheal intubation intravenous general anaesthesia and laryngeal mask combined with spinal epidural anaesthesia for laparoscopic surgery. In this research, the clinical efficacy and the complications of the two groups were compared in detail.

Patients and Methods

70 cases of patients undergoing the selective laparoscopic surgery were ASA I ~ II grade female patients, aged in 22 ~ 55, with a weight of 41 ~ 65 kg. Diseases include ovarian neoplasm, ectopic pregnancy, pelvic adhesion, uterine fibroid and infertility. 70 cases of patients were randomly divided into Group I (epidural block composite endotracheal intubation with intravenous general anaesthesia) and Group II (laryngeal mask airway (IMA) and combined spinal and epidural analgesia (CSEA)), each group had 35 cases.

Anaesthesia method [5-8]

Two groups of patients were intramuscular injected with 0.5 mg atropine and 0.1 g luminal at 30 min before the operation, the monitoring on HR, SpO\textsubscript{2}, PET CO\textsubscript{2} and MAP began before the operation. (1) Group I: T12 ~ L1 clearance puncture was
operated for all 35 cases, the trachea was placed to the head side, 3 ml 2% lidocaine was used for testing, the subarachnoid block was removed, added with 8 ~ 10 ml supernatant, and the level was controlled below T6. Before the skin incision on pneumoperitoneum, 2 ~ 4 μg/kg fentanyl and 0.05 ~ 0.1 mg/kg droperidol were intravenous dripped, 1 ~ 2 mg/kg propofol was intravenous injected, 2 ~ 4 mg/kg/h propofol was continuously intravenous injected during the operation using a micro-pump, the spontaneous breath was held, and the high-flow oxygen mask was used throughout the process. (2) Group II: L2-3 clearance CSEA was selected for all 35 cases, the level of anaesthesia was regulated at T6-8, fentanyl (2 ~ 4 μg/kg), propofol (2 ~ 2.5 μg/kg) were intravenous injected and LMA with the corresponding specification was inserted until the disappearance of eyelash reflex and jaw relaxation, then fixed when no leakage was confirmed and the double-lung breath was clearly heard, using 5 ~ 10 μg/kg/h remifentanil and 4 ~ 6 mg/kg/h propofol, but no muscle relaxant was used, and the spontaneous breath was held during the operation.

Observation index

The pneumoperitoneum pressure of two groups was kept at 12 mmHg during the operation, T0 (before pneumoperitoneum), T1 (5 min after pneumoperitoneum), T2 (20 min after pneumoperitoneum), T3 (45 min after pneumoperitoneum), T4 (5 min after deflation), mean arterial pressure (MAP), saturation of pulse oximetry (SpO2), heart rate (HR) and partial pressure of carbon dioxide in endexpiratory gas (PET CO2) were continuously monitored before, during and after the operation; and the awakening time and flatus recovery time after the operation were recorded. The difference of the effect of adverse reactions such as nausea, vomiting and muscular relaxation on surgical operation and other factors were compared before and after the anaesthesia and awakening.

Statistical method

SPSS was used, the measurement data was denoted by mean ± standard deviation (x ± s), t-test was used for significance analysis, p<0.05 was considered to be statistically significant.

Results

Results and Conclusion

Comparison of awakening and flatus recovery time after operation between these two groups.

Awakening time after the operation of Group I was significantly longer than that of Group II, but no great difference of flatus recovery time was identified (Table 3).

<table>
<thead>
<tr>
<th>Time</th>
<th>HR (n/min)</th>
<th>SpO2 (%)</th>
<th>PETCO2 (mmHg)</th>
<th>MAP (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>T0</td>
<td>76.5 ± 4.3</td>
<td>77.5 ± 5.8</td>
<td>92.5 ± 0.5</td>
<td>93.2 ± 0.4</td>
</tr>
<tr>
<td>T1</td>
<td>75.5 ± 4.8’</td>
<td>74.2 ± 5.1’</td>
<td>92.3 ± 0.6</td>
<td>95.3 ± 0.7</td>
</tr>
<tr>
<td>T2</td>
<td>73.1 ± 3.9’</td>
<td>76.9 ± 4.5</td>
<td>92.6 ± 0.4</td>
<td>95.1 ± 0.6</td>
</tr>
<tr>
<td>T3</td>
<td>78.5 ± 5.2’</td>
<td>76.7 ± 6.3’</td>
<td>93.4 ± 0.7</td>
<td>96.4 ± 0.8</td>
</tr>
<tr>
<td>T4</td>
<td>75.6 ± 3.8</td>
<td>76.5 ± 7.9</td>
<td>93.5 ± 0.9</td>
<td>93.4 ± 0.3</td>
</tr>
</tbody>
</table>

Compared with the data before pneumoperitoneum. ’: p<0.05, indicated that there was great statistical difference between the two groups. ’’: p<0.1, indicated that there was statistical difference between the two groups.

| Table 2. The difference of HR, SpO2, PETCO2, MAP before and after the pneumoperitoneum. |

Table 3. Comparison of awakening and flatus recovery time after operation.

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>TW (min)</th>
<th>TP (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>35</td>
<td>28.2 ± 4.7</td>
<td>14.5 ± 3.1</td>
</tr>
<tr>
<td>II</td>
<td>35</td>
<td>16.32 ± 7.2</td>
<td>13.1 ± 2.2</td>
</tr>
</tbody>
</table>

Zhang/Wang/Qin/Guo

Biomed Res- India 2017 Volume 28 Issue 2
Comparison of the difference of complications resulting from two anaesthesia methods

Both anaesthesia methods mainly cause vomiting, poor muscle which may affect the surgical operation and dragging pain which may agitate the patient, thus impacting the surgical procedure. The occurrence of vomiting, poor muscle may affect the operation and the complication probability of dragging pain, and the overall complication probability in Group II was less than that in Group I, as shown in Table 4.

Table 4. Comparison of the complications.

<table>
<thead>
<tr>
<th>Group</th>
<th>vomiting</th>
<th>poor muscle operation</th>
<th>affected</th>
<th>dragging induced pain</th>
<th>complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>12</td>
<td>5</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>II</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Discussion

The combination of general anaesthesia and epidural block may easily adapt the patient to pathological, physiological changes. It could be explained by the epidural block during the operation obstructing the sensory nerve excitation function of cardiac sympathetic nerve and trachea at the related part, weakening the mechanical stimulation to tracheal mucosa in tracheal intubation, and significantly suppressing the rise of plasma β-endorphin levels, catecholamine and other stress hormones [9]. And the epidural block obstructs the efferent impulse of sympathetic-adrenal medulla and suppresses the noxious stimulation, resulting in the excitation of hypothalamic-pituitary-adrenal axis and the decrease of adrenaline, noradrenaline and cortisol secretion.

In the gynaecological laparoscopic surgery, as CO₂ pneumoperitoneum would affect the breathing and circulation, and the trendelenburg position exacerbates the effect of gas pressure on diaphragm, the majority of gynaecological laparoscopic surgeries use laparoscopic surgery general anaesthesia [10]. However, the cardiovascular response to tracheal intubation is relatively obvious, while the simple CSEA cannot completely eliminate the stretch reflex in surgery, making it difficult to assure the fluency of airway [11,12]. CSEA with LMA was used here to provide a good abdominal muscle relaxation and analgesic effect, reduce the dosage of analgesic drugs and muscle relaxants during the operation, effectively improve the awakening, mental stress and other adverse reactions during CSEA, and LMA general anaesthesia maintained the ventilation easily and conveniently operated. In LMA insertion, there was a slight hemodynamic change since IMA had no direct mechanical stimulation to the trachea and larynx, which has been confirmed by other reports. This thesis also proved that patient undergoing LMA with CSEA had smaller stress responses. For the applications of LMA intravenous anaesthesia with CSEA to gynaecological laparoscopic surgery, most removed the laryngeal mask within 10 ~ 15 min, with quick awakening, painlessness and safety, which is conductive to postoperative care and recovery of lung function. The insertion of LMA into gastric tube for the drainage of gastric contents, which can effectively reduce and prevent the aspiration, with anaesthesia success rate of 100%. But it is noted that indications of LMA should be strictly mastered in satiation, intestinal obstruction, surgery prone position and other cases [13]. LMA is a new anaesthesia apparatus with the advantages of facial mask and endotracheal tube that maintains the ventilation, with no mechanical stimulation to the larynx and trachea and a slight impact on hemodynamic. In maintaining the fluency of airway, LMA not only keeps the awakening and breathing but also enables the assisted respiration and controlled breathing. Another channel is connected with the oesophagus, which can be inserted into the gastric tube to reduce the probability of regurgitation and aspiration, so that safety can be assured [14].

This thesis mainly investigated the efficacy and safety of two anaesthesia methods in laparoscopic surgery, and it was known that LMA and epidural block composite endotracheal intubation with intravenous general anaesthesia can significantly reduce the stress response incurred by pneumoperitoneum, cause less complications of anaesthesia and stabilize the intraoperative blood flow; the application of LMA and CSEA to gynaecological laparoscopic surgery was also safe and operable, with less general anaesthesia dosage and quicker recovery after operation if compared to the endotracheal intubation. Thus, two anaesthesia methods have their own advantages, which should be scientifically and rationally chosen according to the specific pathogenic condition of patient undergoing laparoscopic surgery and his or her individual needs.

References

*Correspondence to
Yanhong Wang
Department of Gynaecology and Obstetrics
Zhengzhou Maternal and Child Health Care Hospital
Zhengzhou
PR China