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Abstract 
 

This paper introduces a protocol for whole-mount immunostaining adapted for the adult 
mouse cerebellum. This technique was originally described by Sillitoe and Hawkes (J His-
tochem Cytochem 50:235-244, 2002) for screening the parasagittal arrangements of cere-
bellar compartmentation antigens, i.e., zebrin II and heat shock protein (HSP25). We fur-
ther optimized this technique to apply to heat-induced antigen retrieval, which provides a 
more rapid and efficient way to perform whole-mount immunostaining of adult tissues 
(Sawada and Sun, Curr Neurobiol 1:21-24, 2010). This approach allows for the visualiza-
tion of spatial organizations of cerebellar examinations of the normal topography, particu-
lar components of olivocerebellar tracts, and patterning defects caused by mutations 
without 3D reconstruction of immunostained serial sections.  
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Introduction 
 
Whole-mount immunostaining was developed on the ba-
sis of immunohistochemistry [1-3], and has become a 
widely used method to visualize the spatial distributions 
of specific antigens in embryos, fetuses, and dissected 
organs in whole mounts. Although the mild tissue proc-
essing procedure of whole-mount immunostaining allows 
for the improved preservation of antibodies in tissues, it is 
difficult to apply such procedures to dense and compact 
tissues, such as adult brain tissue, since the penetration of 
antibodies into tissues is limited to a depth of 8–9 µm [4].  
 
In the cerebellum of mammalian species, the Purkinje 
cells form a complex arrangement of parasagittal stripes 
and transverse zones that is reflected in the diversity of 
gene expression patterns [5-8]. Currently, such parasagit-
tal compartments are known to be formed by an alternat-
ing array of zebrin II-immunopositive and immunonega-
tive Purkinje cell subsets [5]. The Purkinje cell compart-
ments defined by zebrin II are closely related to projec-
tions of the particular components of olivocerebellar 
tracts [9-12]. However, an analysis of cerebellar com-
partmentation requires a 3D reconstruction of immuno- 

stained serial sections [13]. Sitolloe and Hawkes (2002) 
established a protocol for whole-mount immunostaining 
adapted to the adult mouse cerebellum using anti-zebrin II 
[14]. This protocol allows for the visualization of the spa-
tial organizations of other cerebellar compartmentation 
antigens such as phospholipase C3 and C4 [15], pat-
terned Purkinje cell degeneration caused by mutations 
[16], and for the projections of corticotrophin-releasing 
factor (CRF) immunopositive climbing fiber projections 
[12]. This paper introduces a protocol for whole-mount 
immunostaining, which is optimized to visualize the spa-
tial organizations of the cerebellar compartmentation an-
tigens, and for our studies in the detection of patterning 
defects of the cerebellar compartmentation in an ataxic 
mutant, rolling mouse Nagoya. 
 
Original protocol 
 
A protocol of whole-mount immunostaining adapted for 
the adult mouse cerebellum by Sitolloe and Hawkes 
(2002) is shown as follows [14]. The cerebella, which 
are perfused and postfixed with 4% paraformal-
dehyde, are usually used for this approach. Ethanol can 
be substituted for methanol, which is contained in Dent’s 
fixative and is used for dehydration in the following pro-
tocol [17]. 
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Step 1: Post-fix in Dent’s fixative (methanol: di-
methylsulfoxide (DMSO) = 4:1) overnight at room 
temperature (RT). 
Step 2: Immerse in Dent’s bleach (methanol:DMSO: 
30% H2O2 = 4:1:1) overnight at RT to inactivate en-
dogenous peroxidase. 
Step 3: Wash tissues 3 times with 100% ethanol for 60 
min each. 
Step 4: Subject tissues to 5 cycles of chilling to -80 oC 
and thawing at RT in 100% methanol. 
Step 5: Rehydrate tissues for 90 min each with 50% 
methanol, 15% methanol and PBS.  
Step 6: Enzymatically digest tissues in 10 µg/ml pro-
teinase K (> 600 units/ml; Boehringer-Mannheim Inc., 
Quebec, Canada) in PBS for 5 min at RT to improve 
subsequent reagent penetration. 
Step 7: Rinse tissues three times with PBS for 2 hr 
each. 
Step 8: Incubate tissues with PBS containing 2% 
non-fat skim milk and 0.1% Triton X-100 (PBSMT) 
overnight at 4  oC. 
Step 9: Incubate tissues for 48 hr at 4  oC with the 
primary antibody in PBS containing 10% normal goat 
serum (NGS), 0.1% Triton X-100 and 5% DMSO. 

   Step 10: Rinse tissues with PBSMT for 10 min each.  
Step 11: Incubate tissues for 24 hr at 4  oC with a per-
oxidase-conjugated secondary antibody in PBSMT 
containing 5% DMSO. 
Step 12: Wash tissues twice with PBSMT for 2 hr at 4  

oC. 
Step 13: Rinse tissues with PBS containing 0.2% bo-
vine serum albumin and 0.1% Triton X-100 (PBT) for 
2 hr at 4  oC. 
Step 14: Incubate tissues with 0.05% DAB and 
0.015% H2O2 in PBT to visualize the immunoreactive 
products. 

 
Whole-mount immunostaining protocol with 
heat-induced antigen retrieval  
 
Antigen retrieval techniques such as delipidation with 
alcohols, microwave heating in buffers of different pH, 
and autoclaving, can greatly improve the immunohisto-
chemical staining of formalin-fixed and paraffin--
embedded materials by recovering cryptic epitopes in the 
tissues [18]. We modified the original protocol by apply-
ing heat-induced antigen retrieval, and succeeded in de-
vising a more rapid and efficient way to perform 
whole-mount immunostaining [17;19]. The heat-induced 
antigen retrieval procedure is described as follows. The 
following procedure was performed in substitution for 
Steps 3-6 of the original protocol.  
   
 A) Rehydrate tissues with 50% methanol, 15% methanol 

and PBS for 90 min each. 
   B) Treat tissues with Antigen Retrieval Reagent 
UNIVERSAL (R&D system, Minneapolis, MN, lot 
#950512) for 30 min in a 90 oC water bath. 
   C) Cool tissues for 30 min at 4  oC. 
    
Heat-induced antigen retrieval allows the penetration of 
antibodies throughout the cerebellar cortex with no dis-
ruption of the cerebellar cytoarchitectures [17;19]. Vibra-
tome sections of zebrin II-immuostained whole cerebella 
showed positive staining in the dendrites of particular 
subsets of Purkinje cells, the distribution of which was 
identical to that obtained by conventional section immu-
nohistochemistry (Fig. 1). In the original protocol, the 
cerebella is passed through 5 cycles of chilling to -80  oC 
followed by thawing at room temperature for 60 min each 
in 100% methanol prior to the primary antibody addition 
to improve the penetration of the antigens into tissues [14]. 
That step extends the protocol by 10 hr, whereas a 
heat-induced antigen retrieval step can substitute for such 
freeze/thaw cycles in the original protocol of 
whole-mount immunostaining [17]. Since a heat-induced 
antigen retrieval procedure takes only 1 hr, this procedure 
allows for a simpler, more rapid and easy way to perform 
whole mount immunostaining of adult mouse brain tis-
sues than that in the original protocol. 
 
Visualization of spatial organization of cerebel-
lar compartmentation antigens 
 
Figure 2 shows whole-mount cerebella immunostained 
for zebrin II and heat shock protein 25 (HSP25) in the 
adult mice. Four transverse expression domains (“zones”) 
in the cerebellum have been defined based on the expres-
sion pattern of zebrin II: the anterior zone (AZ: lobules 
I–V) – stripe; the central zone (CZ; lobules VI to VII) – 
uniform; the posterior zone (PZ; lobules VIII to dorsal 
IX) – stripe; and the nodular zone (NZ; ventral lobule IX 
to lobule X) – uniform (Fig. 2) [8;13;14]. Such a pattern 
of zebrin II expression is known to alternate complemen-
tal to phospholipase Cß4 [15]. Whereas zebrin II expres-
sion uniformly appeared in the CZ and NZ, these two 
both further subdivided into a reproducible array of para-
sagittal stripes defined by the expression patterns of the 
HSP25 (Fig. 2) [8] and human natural killer cell antigen 1 
(HNK 1) [20;21]. Such Purkinje cell patterns are central 
to normal cerebellar organization [14], and their disrup-
tion triggers severe motor control problems [22-24].  
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Figure 1. Photographs of whole mount zebrin II immu-
nostaining by using the present modified protocol which 
includes heat induced antigen retrieval (A,C) and the 
original protocol (B, D) and, and zebrin II immu-
nostaining of transverse vibratome sections of 
whole-mount zebrin II stained cerebella (E) and trans-
verse vibratome sections by conventional section immu-
nohistochemistry (F). Staining patterns of zebrin II were 
similar between the original and modified protocols 
(A-D). Vibratome sections of whole mount cerebella 
showing zebrin II staining in dendrites of particular sub-
sets of Purkinje cells with no disruption of cerebellar cy-
toarchitectures. Distribution of zebrin II-immunopositive 
Purkinje cells were identical to that obtained by conven-
tional section immunohistochemistry. Bar = 1 mm in (A) 
[Applied to (B), (C) and (D)]. Bar = 20 m in (E) [Ap-
plied to (F)] (Adapted from Ref. 17). 
 
Visualization of particular components of oli-
vocerebellar tracts 
 
Though CRF is a 41-amino acid peptide that is primarily 
thought of as a stress-related hypophysiotropic hormone,  

 

 
 
Figure 2. Cerebellar compartments defined by zebrin II 
and HSP25 immunostaining in the mouse. A: Dorsal 
view of zebrin II-stained whole-mount cerebellum. B: 
Dorsal view of HSP25-stained whole-mount cerebellum. 
C: Summary of the topographical distribution of zebrin II 
in the mouse cerebellum. D. Summary of the topographi-
cal distribution of HSP25.  Four transverse expression 
domains (“zones”) in the cerebellum have been revealed 
in the cerebellum based on the expression pattern of zeb-
rin II: the anterior zone (AZ: lobules I–V) – stripe; the 
central zone (CZ; lobules VI to VII) – uniform; the poste-
rior zone (PZ; lobules VIII to dorsal IX) – stripe; and the 
nodular zone (NZ; ventral lobule IX to lobule X) – uni-
form. Whereas zebrin II is uniformly expressed in the CZ 
and NZ, those two zones are further subdivided into a 
reproducible array of parasagittal stripes defined by the 
expression patterns of the HSP25. CI: crus I of ansiform 
lobule; CII: crus II ansiform lobule; F: flocculus; PF: 
paraflocculus; sim: lobulus simplex. Bar = 1 mm (From 
Ref. 19). 
 
it is also widely implicated as a neurotransmitter 
throughout the central nervous system.  In the cerebel-
lum, CRF is present in the subsets of climbing and mossy 
fibers, serving as a neuromodulator that enhances the 
glutamate sensitivity of Purkinje cells [25-27] and the 
induction of a long-term depression at the climbing fi-
ber-Purkinje cell synapse [28]. Interestingly, CRF-immu-
nopositive climbing fibers form a striking parasagittal 
pattern in the cerebellum, which resembles the expres-
sionpattern of zebrin II in several mammalian species 
such as non-human primates [29], cat [30], opossum [31], 
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Figure 3. Photographs of zebrin II (A) and CRF (B) 
stained whole-mount cerebella, and summaries of the 
topographical distributions of zebrin II and CRF in the 
mouse cerebellum (C). Whole-mount staining patterns 
are similar, but do not completely overlap between zebrin 
II and CRF. Note the absence of CRF immunostaining 
from lobule VII and the presence of only four 
CRF-immunopositive stripes in lobule VIII. CI: crus I of 
ansiform lobule; CII: crus II ansiform lobule; F: floccu-
lus; PF: paraflocculus; sim: lobulus simplex. Bar = 1 mm 
(adapted from Ref. 12). 
 
rabbit [32], and mice [33]. In our previous study, 
whole-mount immunostaining revealed that CRF-immuno 
positive climbing fiber projections did not completely 
overlapp with the distribution of zebrin II-immuno- posi-
tive Purkinje cells (Fig. 3) [12]. The parasagittal array of 
CRF-immunopositive stripes in the AZ and the hemi-
spherical regions of the CZ and PZ was generally similar 
to that revealed by zebrin II expression (Fig. 3). However, 
in the vermis of the CZ, PZ and NZ, the pattern of 
CRF-immunopositive climbing fiber projections did not 
precisely match the pattern of zebrin II expression. In the 
CZ, CRF-immunopositive climbing fiber terminals were 
plentiful in lobule VIb but absent from lobule VII, whe-
reas zebrin II was expressed uniformly (Fig. 3).  
 
In lobule VIII (the rostral PZ), the array of CRF-immuno-
positive climbing fiber stripes did not coincide with those 
of the zebrin II-immunopositive Purkinje cell stripes, 
while CRF-immunopositive stripe 2 shared its lateral 
boundary with the medial edge of P4+ but its medial 
boundary split P3+ in half (Fig. 3). CRF-immunopositive 

climbing fiber stripes were also present in lobules IX and 
X, the flocculus and paraflocculus (NZ), whereas zebrin 
II immunostaining was expressed uniformly in those re-
gions (Fig. 3).  
 
Some CRF-immunopositive climbing fibers were distrib-
uted, corresponding to HSP25-immunopositive Purkinje 
cell stripes in the NZ (Fig. 3).  
 
 
Visualization of patterning defects in the cere-
bellum 
 
Patterning defects in the cerebellum are revealed in mu-
tant mice by whole mount immunostaining, e.g., a pat-
terned Purkinje cell loss in whole-mount cerebella im-
munostained for Calbindin D-28 k in lurcher and Nie-
mann-Pick type mice [14,16]. We here introduce our re-
cent study that revealed a striking pattern of parasagittal 
stripes of ectopic tyrosine hydroxylase (TH) expression in 
the cerebellum of rolling mice by whole mount immu-
nostaining [34]. 
 
Rolling mice are an ataxic mutant mouse first described 
by Oda (1973) [35] and characterized by a severe ataxic 
gait and abnormal hindlimb extension [36;37]. This mu-
tant mouse carries a mutation in a recessive autosomal 
allele of the tottering locus on chromosome 8 [35] that 
encodes a gene for the 1A subunit of P/Q-type Ca2+ 
channel (CaV2.1) [38], as do tottering, leaner [39], rocker 
[40] and wobbly [41] mice. In humans, defects in this 
gene are responsible for several neurological disorders 
such as episodic ataxia type-2 (EA-2) and familial hemi-
plegic migraine [42]. We previously reported an ectopic 
expression of TH in particular subsets of Purkinje cells, 
which were similar to the expression pattern of zebrin II, 
in the cerebellum of rolling mice [43-47]. Such an ectopic 
TH expression is thought to reflect an increase in the in-
tracellular Ca2+ concentration of the Purkinje cells [44]. 
However, ectopic TH expression in the Purkinje cells was 
not specific to the Cav2.1 mutants, since it has been ob-
served in other allelic mutant mice such as dilute-lethal 
[43;48] and Neimann-Pick type C1 [49].  

 
Whole-mount immunostaining revealed such an ectopic 
TH expression in the cerebellum of rolling mice with a 
zebrin II-like expression pattern (Fig. 4). However, ex-
pression patterns between TH and zebrin II did not com-
pletely overlap. Whereas zebrin II was uniformly ex-
pressed throughout the CZ (lobules VI to VII) and NZ 
(ventral IX and lobule X), TH-immunopositive Purkinje 
cell stripes were present in those regions with an alternat-
ing array toward HSP25-immunopositive Purkinje cell 
stripes (Fig. 4) [34]. Section-double immunohisto chem-
istry revealed that some but not all TH-immunopositive  
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Figure 4. Photographs of TH stained whole-mount cere-
bella in rolling (A) and wild-type (B) mice, and summa-
ries of the topographical distribution of TH in these two 
mice (C). Five narrow TH-immunopositive stripes were 
observed in lobules I to V. An array of TH-immuno-
positive stripes was also obvious more laterally in the 
lobulus simplex. Although TH-immunopositive Purkinje 
cell subsets formed symmetrical stripes anteriorly in lob-
ules V–VIb, and more posteriorly in lobules VIII–IX, 
these cell subsets delineated a TH-immunopositive trans-
verse zone of lobule VII. TH-immunopositive stripes are 
evident in lobule X, and the paraflocculus. CI: crus I of 
ansiform lobule; CII: crus II ansiform lobule; F: floccu-
lus; PF: paraflocculus; sim: lobulus simplex. Bar = 1 mm 
(From Ref. 19). 
 
stripes shared common boundaries with HSP25- im-
munopositive stripes in those regions [34].  

 
These results suggest that the constitutive expression of 
HSP25 prevents the ectopic expression of TH in zebrin 
II-immunopositive Purkinje cell subsets in the cerebellum 
of rolling mice. 
 
Conclusions 
 
Whole-mount immunostaining is a widely used method 
for visualizing the spatial distributions of specific anti-
gens in embryos, fetuses, and dissected organs in a whole 
mount. Optimization of this technique for the adult mouse 
cerebella serves to clarify the spatial distributions of ce-
rebellar compartmentation antigens (i.e., zebrin II and 
HSP25) [14,15], particular subsets of climbing fibers [12], 
urkinje cell loss in mutant mice [14;16], and the ectopic 

expression of the specific antigens [34;46;47] without the 
laborious task of sectioning and 3D reconstruction. This 
approach allows us not only to screen out the cerebellar 
topography and patterning defects but also to investigate 
other structures of the nervous system, such as barrels in 
the primary somatosensory cortex, and ocular dominance 
stripes and columns in the primary visual cortex.  
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