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Abstract

In clinical practice, it is difficult to monitor the repeating relapse in patients who have been suffering
from systemic lupus erythematosus (SLE). The underlying etiology remains largely unknown. In order
to understand the pathogenesis of SLE, the renal tubular cells-derived iPSCs were successfully obtained
from urine of SLE patients. Here, with the purpose of identifying differentially expressed genes, high-
throughput Illumina sequencing technology were analyzed the mRNA expression in SLE-iPSCs group
and control-iPSCs group. Within the 4,254 genes, which were differentiated at least two-fold between the
SLE-iPSCs and control-iPSCs, 2,856 genes were up-regulated and 1,398 down-regulated. These
differentially expressed genes were involved in 9 cellular components, 9 molecular functions, 8 biological
processes and 6 pathways with p-value ≤ 0.05. The clusters of “cellular process”, “intracellular” and
“binding” represented the largest group in Process Ontology, Component Ontology, Function Ontology,
respectively. Most differentially expressed genes involved in Function of binding, which were reported to
be relevant with RNA transcription in SLE. Moreover, alternative splicing events and gene structure
refinements of SLE-iPSCs group were greater than those of control-iPSCs group. Occurrence and
development of SLE may be related to the excessive alternative spliced genes and events of alternative
splicing. Using large cohorts of patient samples with long-term clinical follow-up data deserves for
further investigation and research. Thus, it could assess the usefulness of the pathogenesis of SLE.
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Introduction
Systemic lupus erythematosus (SLE) is the prototype of
complex autoimmune disease characterized by the production
of autoantibodies which results in widespread immunologic
abnormalities and immune complex formation [1]. The patients
can present variable manifestations and the nature courses are
alternately remissions and relapses. Till now, although a lot of
related researches have been undertaken [2], SLE patients still
have no effective cures, whose treatments are often based upon
long-term broad-spectrum immune suppressive regimes in the
current therapeutic management. It has also become a major
public health problem. Therefore, a rational approach for
therapeutic design requires a detailed understanding of disease
pathogenesis, and systematic characterization of the molecular
and cellular basis of signaling abnormalities within the immune
system and their relationship to regulation of gene expression
remain critical for understanding [3].

The possibility of reprogramming somatic cells to induced
pluripotent stem cells (iPSCs) offers an opportunity to generate
pluripotent patient-specific cell lines, which can be conductive
to studying pathogenesis of model human diseases [4]. Also,
these iPSCs lines are powerful tools for drug discovery and the
development of cellular transplantation therapies [4].
Generation of iPSCs from urine, fibroblasts and keratinocytes
of disease patients has been reported [5-8]. To study SLE
pathogenesis, renal tubular cells derived iPSCs were
successfully established from urine of SLE patients [9]. In this
study, high-throughput Illumina sequencing technology was
utilized to further study the model cells of SLE-iPSCs.

Recently, the high-throughput Illumina Genome Analyzer
provides a powerful approach to identify differentially
expressed genes for the given cell, tissue and organism
[10-12]. It can increase transcript sensitivity and identify novel
transcripts, single nucleotide polymorphisms as well as
splicing events [13]. Sequencing technology is developing
rapidly, which results in the discovery of new disease genes.
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Actually, numerous chromosomal loci may harbor
susceptibility genes [14,15]. By using the high-throughput
Illumina sequencing platform, this study detects the mRNA
expression in SLE-iPSCs group and control-iPSCs group,
analyzes the two groups of differentially expressed genes and
then identifies novel transcripts and splicing events. Further
studies of gene regulation at transcriptional levels could help
us to determine the pathogenesis of SLE comprehensively and
accurately.

Materials and Methods

Materials
All the studies and other procedures were approved by the
ethics committee of the Shenzhen People’s Hospital
(Shenzhen, China) or the Guangzhou Institutes of Biomedicine
and Health (Guangzhou, China). One patient, at the age of 39,
was diagnosed as active SLE with SLEDAI>8. Moreover, one
subject, age and sex matched, was recruited as healthy
controls. To generate human iPSCs clone, renal tubular cells
from urine of SLE patients were reprogrammed. Furthermore,
SLE-iPSCs clone and control-iPSCs clone were identified [9].
Morphology was identified as well [9] (Figure 1). All of the
samples were collected and immediately frozen in liquid
nitrogen and stored at - 80°C.

Figure 1. Morphological characteristics appeared at days 6-7 post-
transduction. a The SLE-iPSCs were picked at day 19, Matrigel 10×;
b Alkaline phosphatase (AP)-positive SLE-iPSCs were imaged using
light microscope, feeder 10X.

RNA extraction, cDNA library construction and
sequencing
The SLE-iPSCs and Control-iPSCs were utilized for RNA
extraction, and total RNA of iPSCs was extracted as described
previously [16]. The individual RNA samples were quantified
and examined spectrophotometrically for protein
contamination (A260/A280 ratio) and reagent contamination
(A260/A230 ratio), which were prior to library construction.

The cDNA library was carried out at the Beijing Genomics
Institute (BGI, Shenzhen, Guangdong, China) by using the
Illumina manufacturer’s instructions. The main reagents and
supplies were the Illumina Gene Expression Sample Prep Kit
and the Solexa Sequencing Chip (flowcell), and the main
instruments were the Illumina Cluster Station and the Illumina
HiSeqTM 2000 System. In a nutshell, it is to extract the total
RNA from samples. mRNA is enriched by utilizing the oligo

(dT) magnetic beads and removing rRNA from the total RNA
with kit. Through the fragmentation buffer, the mRNA is
fragmented into short fragments (about 200~700 bp), Then, the
first-strand cDNA is synthesized by random hexamer-primer
using the mRNA fragments as templates. Buffer, dNTPs,
RNase H and DNA polymerase I are added to synthesize the
second strand cDNA. The double strand cDNA is purified with
QiaQuick PCR extraction kit. Finally, sequencing adapters are
ligated to the fragments. The fragments are purified by agarose
gel electrophoresis and enriched by PCR amplification. The
library products are ready for sequencing analysis via Illumina
HiSeqTM 2000.

Bioinformatics analysis of sequencing data
Primary sequencing data produced by Illumina HiSeqTM 2000,
called raw reads, is subjected to quality control (QC). To
determine whether a resequencing step is necessary, the QC of
alignment will be performed. Raw reads were filtered to
remove reads with adapters, unknown bases of more than 10%
and low quality reads (which are defined as reads having more
than 50% bases with quality value ≤ 10). After filtering, the
remaining reads, which are called “clean reads”, will be
aligned to the reference sequences with SOAP2 [17]. Then, QC
of alignment is performed again. The alignment data is utilized
to calculate the distribution of reads on reference genes and
perform coverage analysis. If alignment results pass QC, we
will proceed with downstream analysis including gene
expression, gene structure refinement, alternative splicing,
novel transcript prediction and SNP detection.

Gene expression analysis
Results of gene expression contain gene expression levels and
differential expression analysis. The levels of gene expression
were measured as numbers of reads per kilobase of exon model
in a gene per million mapped reads (RPKM), which can be
directly utilized to compare the differences of gene expression
among the samples.

According to Differentially Expressed Genes (DEGs), we
utilize ‘FDR(false discovery rate) ≤ 0.001 [18] and the absolute
value of log2-Ratio ≥ 1 ’as the thresholds to judge the
significance of DEGs. Then, more stringent criteria with
smaller FDR and bigger fold change value can be applied to
identify DEGs. These Differentially Expressed Genes were
annotated in Gene Ontology (GO) and KEGG pathway
analysis.

GO enrichment analysis maps all DEGs to GO terms in the
database (http://www. geneontology.org/), calculating gene
numbers for each term. Beyond that, the calculated p-value
goes through Bonferroni Correction [19], taking corrected p-
value ≤ 0.05 as a threshold. GO terms fulfilling this condition
are defined as significantly enriched GO terms in DEGs. This
analysis can recognize the main biological functions exercised
by DEGs.
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Result

High-throughput sequencing and reads mapping
In order to identify SLE-related genes, transcript profiling of
iPSCs was performed using RNA-Seq. Clean reads are mapped
to genome sequence by using SOAP2 aligner.

Through mapping of reads to entire genome sequence, a total
of 26,749,056 and 26,855,414 high-quality reads were obtained
for the SLE-iPSCs and the control-iPSCs, respectively (Table
1). After discarding the low quality tags, 2,407,415,040 and
2,416,987,260 tags remained in the SLE-iPSCs and control-

iPSCs, respectively. 23,488,075 (87.81%) and 23,928,072
(89.10%) reads were mapped to the whole genome, 16,513,998
(61.74%) and 15,718,886 (58.53%) reads were perfect match
in the SLE-iPSCs and control-iPSCs, respectively. 795,112
reads were expressed exclusively in the SLE-iPSCs, which
were possibly related to the SLE development. Further analysis
revealed that 21,382,507 unique tags (79.94%) and 21,937,249
(81.69%) were exclusively matched in the SLE-iPSCs and
control-iPSCs, respectively. These data indicate that
approximately 80% of the transcripts are expressed in the SLE-
iPSCs and control-iPSCs (Table 1).

Table 1. The SLE-iPSC and control-iPSC reads were mapped to the human Genome.

Map to
Genome

Total Reads Total BasePairs Total Mapped
Reads

perfect match <=5bp
mismatch

unique match multi-
position
match

Total Unmapped
Reads

SLE- iPSC 26749056 2407415040 23488075 16513998 6974077 21382507 2105568 3260981

(%) 100.00 100.00 87.81 61.74 26.07 79.94 7.87 12.19

Control- iPSC 26855414 2416987260 23928072 15718886 8209186 21937249 1990823 2927342

(%) 100.00 100.00 89.10 58.53 30.57 81.69 7.41 10.90

Gene structure refinement
Mapping to genome allows for potential discovery of novel
exons and novel 5’ and 3’ ends. This can increase sensitivity
and specificity due to recognition of potential reads through
transcripts from neighboring genes. Transcripts were
assembled with reads by Cufflinkss [20]. Through comparing
assembled transcripts and gene annotation from reference
sequences, it’s possible to find assembled transcripts that can
extend 5’ or 3’ end of gene annotation, and therefore refine
gene structure. 6,985 and 2,935 gene structures were refined in
the SLE-iPSCs and control-iPSCs, respectively. Gene structure
refinements in the SLE-iPSCs were apparently higher than
those in the control-iPSCs (Figure 2).

Figure 2 Number extend 5’ or 3’ end of Gene structure refinement
between SLE- iPSC and control-iPSC.

Novel transcript regions were also detected using Cufflinkss.
As a novel transcript, an assembled transcript must meet three

requirements. This means that the transcript must be at least
200 bp away from annotated gene, the transcript is of length
over 180 bp and the sequencing depth is no less than 2. In our
experiment, 792 and 973 novel transcribed regions were found
in the SLE-iPSCs and control-iPSCs, respectively.

Alternative splicing analysis
To generate a mature mRNA, the introns must be removed and
exons joined together in the process of pre-mRNA splicing
[21]. Many pre-mRNAs in humans and other metazoans
undergo the process of alternative splicing (AS) where multiple
mRNA isoforms are produced from a single gene locus. In
order to detect gene junctions, we perform an “intact”
alignment using SOAPsplice to map complete reads to the
reference genome. The remaining reads, initially unmapped
reads (IUM reads), are mapped with the spliced alignment
algorithm. We mainly detect four kinds of alternative spliced
events, exon skipping, intron retention, alternative 5’ splice site
and alternative 3’ splice site (Figures 3 and 4). Our results
indicate that SLE-iPSCs have a higher rate of alternative
splicing, compared with the control-iPSCs (Figure 4). And
alternatively spliced genes of SLE-iPSCs are significantly
higher than those of control-iPSCs (Figure 3). Disruption of
normal splicing or splicing misregulation has been observed in
a large number of diseases, which has been reviewed
extensively [22-24]. The results clearly show that different
organisms have different levels of alternative splicing, as well
as alternatively spliced genes. Occurrence and development of
SLE may be related to the excessive alternatively spliced genes
and events of alternative splicing.
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Figure 3. Genes of Alternative Splicing in SLE-iPSC and control-
iPSC.

Figure 4. Events of Alternative Splicing in SLE-iPSC and control-
iPSC.

Global analysis of gene expression
One of the primary goals of transcriptome sequencing is to
compare gene expression levels in different genotypes. We
estimated the expression levels of genes between the SLE-
iPSCs and the control-iPSCs. The expressed levels are
measured in “reads per kilobase of exon model per million
mapped reads” (RPKM), and the expression level of one gene
is the sum of the RPKM values of its isoforms [25]. A total of
18,142 annotated genes were detected with RPKM>0. Using
the P-value ≤ 0.05 and FDR ≤ 0.001 as threshold value, 4,254
genes were detected at least two-fold difference between the
SLE-iPSCs and control-iPSCs (Figure 5). 2,856 genes and
1,398 genes represent a higher and lower abundance of more
than two fold than those of control-iPSCs, respectively. The
blue dots representing differentially expressed genes are less
than two-fold between the two libraries, which are arbitrarily
designated as ‘‘no difference in expression’’. We observe that
parts of the dots are on the axis. Red dots of Y-axis indicate
that genes only express in SLE-iPSCs, and green dots of X-
axis only express in control-iPSCs. The differentially
expressed genes with ten-fold or greater are shown in Tables 2
and 3. We find that most differential expressed genes are

involved in binding, ion binding, GTPase regulator activity,
nucleoside- triphosphatase regulator activity of Function
Ontology (Table 3) and so on.

Figure 5. Comparison of gene expression levels between the SLE-
iPSC and control-iPSC.

Table 2. Up-regulated of the differential expressed genes with ten-fold
or greater.

Gene ID Description Log2ratio GO Function

7503 X (inactive)-specific
transcript (non-protein
coding)

13.92469 -

647135 SLIT-ROBO Rho
GTPase activating
protein 2 pseudogene
2

13.37934 binding; enzyme activator
activity

400680 hypothetical
LOC400680

12.16684 -

728739 programmed cell
death 2 pseudogene

11.70369 metal ion binding

391322 D-dopachrome
tautomerase-like

11.67755 binding; carboxy-lyase
activity; intramolecular
oxidoreductase activity

8577 transmembrane
protein with EGF-like
and two follistatin-like
domains 1

11.37174 -

128486 fat storage-inducing
transmembrane
protein 2

11.08058 -

343171 olfactory receptor,
family 2, subfamily W,
member 3

11.05965 G-protein coupled
receptor activity

645455 centrosomal protein
170kDa pseudogene
1

11.04503 -

3043 hemoglobin, beta 10.84645 iron ion binding; protein
binding

27023 forkhead box B1 10.82734 sequence-specific DNA
binding RNA polymerase
II transcription factor
activity

168620 basic helix-loop-helix
family, member a15

10.74333 nucleic acid binding;
identical protein binding
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285598 ADP-ribosylation
factor-like 10

10.73247 nucleotide binding

85439 stonin 2 10.58868 binding

5456 POU class 3
homeobox 4

10.427 nucleic acid binding
transcription factor activity;
sequence-specific DNA
binding; structure-specific
DNA binding

3188 heterogeneous
nuclear
ribonucleoprotein H2
(H')

10.34543 poly-pyrimidine tract
binding

642968 family with sequence
similarity 163,
member B

10.31501 -

80108 zinc finger protein 2
homolog

10.31064 nucleic acid binding
transcription factor activity;
nucleic acid binding;
transition metal ion
binding

339535 hypothetical
LOC339535

10.13272 -

56134 protocadherin alpha
subfamily C, 2

10.12553 signal transducer activity;
metal ion binding

2949 glutathione S-
transferase mu 5

10.09299 transferase activity

10887 prokineticin receptor 1 10.06696 neuropeptide receptor
activity

27091 calcium channel,
voltage-dependent,
gamma subunit 5

10.04713 calcium channel activity

Table 3. Down-regulated of the differential expressed genes with ten-
fold or greater.

Gene ID Description Log2rati
o

GO Function

9086 eukaryotic translation
initiation factor 1A, Y-
linked

-15.3561 translation factor activity,
nucleic acid binding

8653 DEAD (Asp-Glu-Ala-
Asp) box polypeptide
3, Y-linked

-13.7175 nucleic acid binding; RNA
helicase activity; ATPase
activity, coupled

55410 non-protein coding
RNA 185

-13.6707 -

84663 chromosome Y open
reading frame 15B

-13.5977 -

22829 neuroligin 4, Y-linked -12.719 binding; identical protein
binding;

5616 protein kinase, Y-
linked

-12.7115 cyclic nucleotide-dependent
protein kinase activity;

256536 transcription
elongation regulator
1-like

-12.603 binding

83869 testis-specific
transcript, Y-linked 14

-12.454 -

8284 lysine (K)-specific
demethylase 5D

-12.052 nucleic acid binding;
oxidoreductase activity;
transition metal ion binding

246126 chromosome Y open
reading frame 15A

-12.0162 -

6736 sex determining
region Y

-12.0071 nucleic acid binding
transcription factor activity;
nucleic acid binding;
transcription regulator activity

9506 P antigen family,
member 4

-11.254 -

64595 testis-specific
transcript, Y-linked 15

-11.253 sequence-specific DNA
binding

728640 family with sequence
similarity 133,
member B
pseudogene

-10.9706 -

9087 thymosin beta 4, Y-
linked

-10.9171 cytoskeletal protein binding

729609 hypothetical
LOC729609

-10.9048 binding

8287 ubiquitin specific
peptidase 9, Y-linked

-10.6199 endopeptidase activity;
thiolester hydrolase activity;
small conjugating protein-
specific protease activity;
SMAD binding

130367 sphingosine-1-
phosphate
phosphatase 2

-10.456 phosphatase activity

1419 crystallin, gamma B -10.4233 structural molecule activity

93408 myosin, light chain
10, regulatory

-10.266 metal ion binding

7404 ubiquitously
transcribed
tetratricopeptide
repeat gene, Y-linked

-10.2028 oxidoreductase activity;
cation binding

56891 lectin, galactoside-
binding, soluble, 14

-10.1905 carboxylesterase activity;
hydrolase activity;
carbohydrate binding

26212 olfactory receptor,
family 2, subfamily B,
member 6

-10.1134 G-protein coupled receptor
activity

100128124 hypothetical
LOC100128124

-10.1112 -

376693 ribosomal protein S10
pseudogene 7

-10.0133 structural molecule activity;
binding

Table 4. The classification of differentially expressed genes in different category based on function ontology.
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Accession Gene Ontology term Numbers of DEG involved in
term

Numbers of DEG involved in
ontology

Cluster frequency Corrected P-value

GO:0005488 binding 2825 3274 86.30% 2.28E-08

GO:0043167 ion binding 997 3274 30.50% 5.76E-13

GO:0043169 cation binding 986 3274 30.10% 5.43E-13

GO:0046872 metal ion binding 808 3274 24.70% 2.27E-12

GO:0046914 transition metal ion binding 552 3274 16.90% 5.15E-06

GO:0030695 GTPase regulator activity 117 3274 3.60% 0.00012

GO:0060589 nucleoside-triphosphatase
regulator activity

118 3274 3.60% 9.65E-05

GO:0005085 guanyl-nucleotide
exchange factor activity

36 3274 1.10% 0.02771

GO:0005088 Ras guanyl-nucleotide
exchange factor activity

36 3274 1.10% 0.0159

Gene ontology functional enrichment analysis of
differentially expressed genes (DEGs)
Gene Ontology (GO) is an international standardized gene
functional classification system, which offers a dynamic update
and a strictly defined concept to comprehensively describe the
properties of genes and their products in any organism.

Using the P-value ≤ 0.05 as the threshold value, 4,254
differentially expressed genes were categorized into 30
functional groups (Tables 4-6), which included 9 molecular
functions (Table 4), 9 cellular components (Table 5) and 8
biological processes (Table 6).

According to biological process, 3,067 differentially expressed
genes were involved in biological process. The genes involved
in cellular process (2264) [GO: 0009987] were enriched more
significantly than other seven biological processes. The next
representative terms were metabolic process (macromolecule
metabolic process, cellular macromolecule metabolic process,
cellular protein metabolic process) (Table 6). According to

cellular component, 3,350 differentially expressed genes were
involved in cellular component. The most representative GO
term was intracellular (GO: 0005622), the next representative
GO term was organelle (GO: 0043226), which was carried out
at the intracellular level and results in the biosynthesis of
constituent macromolecules, assembly, arrangement of
constituent parts, or disassembly of an intracellular component
(Table 5). The significantly enriched transcripts on the
Function Ontology were 2,825 DEGs, which associated with
the GO term of binding [GO: 0005488], the differentially
expressed genes were also involved in ion binding, cation
binding, metal ion binding, transition metal ion binding. The
remaining of differentially expressed genes was categorized
into regulator activity (GTPase regulator activity, nucleoside-
triphosphatase regulator activity) and exchange factor activity
(guanyl-nucleotide exchange factor activity, Ras guanyl-
nucleotide exchange factor activity). Alessandra B and Pernis
reported that deregulation of Rho GTPase-mediated pathways
might play a role in the pathogenesis of SLE [26].

Table 5. The classification of differential expressed genes in different category based on component ontology.

Accession Gene Ontology term Numbers of DEG
involved in term

Numbers of DEG involved
in ontology

Cluster frequency Corrected P-value

GO:0005622 intracellular 2510 3350 74.90% 0.00016

GO:0044424 intracellular part 2497 3350 74.50% 0.00013

GO:0043226 organelle 2140 3350 63.90% 0.00358

GO:0043229 intracellular organelle 2115 3350 63.10% 0.01626

GO:0044422 organelle part 1056 3350 31.50% 0.01696

GO:0005634 nucleus 461 3350 13.80% 0.03414

GO:0044428 nuclear part 449 3350 13.40% 0.03634

GO:0005840 ribosome 61 3350 1.80% 0.03914
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GO:0005840 ribosomal subunit 58 3350 1.70% 0.00816

Table 6. The classification of differential expressed genes in different category based on process ontology.

Accession Gene Ontology term Numbers of DEG
involved in term

Numbers of DEG
involved in ontology

Cluster frequency Corrected P-value

GO:0009987 cellular process 2264 3067 73.80% 0.00099

GO:0043170 macromolecule metabolic process 1154 3067 37.60% 0.01762

GO:0044260 cellular macromolecule metabolic process 1005 3067 32.80% 3.27E-05

GO:0007275 multicellular organismal development 661 3067 21.60% 0.02366

GO:0044267 cellular protein metabolic process 568 3067 18.50% 8.92E-05

GO:0007155 cell adhesion 143 3067 4.70% 0.00025

GO:0022610 biological adhesion 143 3067 4.70% 0.00025

GO:0016337 cell-cell adhesion 94 3067 3.10% 3.27E-05

Pathway enrichment analysis for DEGs
Genes usually interact with each other in certain biological
functions. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) Pathway database contains a record of all known
networks of molecular interactions in cells and the variants of
these pathways that are specific to particular organisms [27].
Pathway enrichment analysis helps us to understand what
biological functions the genes have and how these genes
interact with each other. In this study, the KEGG database can
be used to analyze the potential involvement of differentially
expressed genes.

Pathways with Q-value ≤ 0.05 were significantly enriched in
differentially expressed genes. The differentially expressed
genes were categorized into six pathways. The most
representative pathway is purine metabolism, and then 4.42%
of differentially expressed genes were involved in pathways in
cancer (Table 7). Purinergic signaling not only regulated
numerous organ systems, but also involved in embryonic
development, injury and pain [28]. Moreover, there is evidence
that purinergic receptors play a role in the regulation of
behaviours and immunity [29]. Our result shows most
significant difference of expressed genes in SLE-iPSCs involve
in purine metabolism.

Table 7. Pathway enrichment analysis for DEGs.

Pathway
ID

Pathway Cluster
frequency

P-value Q-value

ko00230 Purine metabolism 9.27% 0.00084
8

0.03353
2

ko05200 Pathways in cancer 4.42% 0.00021 0.01601
9

ko05222 Small cell lung cancer 1.48% 0.00017
3

0.01601
9

ko03010 Ribosome 1.42% 7.07E-0
5

0.01601
9

ko04350 TGF-beta signaling
pathway

1.40% 0.00087
9

0.03353
2

ko05220 Chronic myeloid leukemia 1.34% 0.00028
6

0.01635
3

Discussion
During the past few years, new NGS technologies have been
developed with applications in complete genome sequencing,
metagenomic sequencing, Chip-Seq, small RNA sequencing,
transcriptome profiling, and others. Yukinori Okada et al [30]
uses genome-wide association studies (GWAS) to discovery of
susceptibility genes of SLE. And Graham, Deborah S
Cunninghame [31] indicates that GWAS has been shown to be
a powerful way of identifying novel susceptibility genes in
SLE.

Our study provides the first comprehensive insight into the
transcriptome of SLE- iPSCs using Illumina HiSeqTM 2000, as
a powerful next generation RNA sequencing platform. We
calculated the number of differentially expressed genes
between SLE- iPSCs and control-iPSCs based on RPKM.
4,254 genes were considered to be significant difference,
classified using Gene Ontology (GO) and KEGG Pathway. The
clusters of “cellular process”, “intracellular” and “binding”
represented the largest group in Process Ontology, Component
Ontology and Function Ontology, respectively. Most
differentially expressed genes involved in Function of binding
(Tables 2 and 3), such as up-regulated hemoglobin, forkhead
box B1, basic helix-loop-helix family and down- regulated
eukaryotic translation initiation factor 1A, transcription
elongation regulator 1-like and so on. Most of them were
reported to be relevant with RNA transcription in SLE [32].
Bhatnagar et al. [33] showed that human Hemoglobin (Hb) was
demonstrated in the sera of systemic lupus erythematosus
(SLE). In addition, heterogeneous nuclear ribonucleoprotein
H2 was significant difference in the study, which was
consistent with our previous results [34]. Siapka et al. also
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demonstrated that hnRNP had a predominant nuclear
localization and exerted multiple functions, including
regulation of alternative splicing, transport of mRNA and
regulation of translation [35].

Alternative splicing has recently emerged as a major
mechanism for expanding and regulating the repertoire of gene
functions [36]. Alternatively spliced proteins are involved in
many biological processes like apoptosis [37]. The effects of
these polymorphisms on splicing efficiency are believed to
contribute significantly to disease severity and susceptibility
[38]. Most alternative splicing events affect the coding
sequence, subsequently amino acid sequence. Recently, a
number of observations indicate physiological or pathological
significance of alternative splicing and its role in the genetic
background of diseases [39], such as immune diseases [40].
About one third of AS events result in splice variants
containing premature termination codon, or leading to
nonsense-mediated decay of the RNA product [41]. Many
disease- associated mutations also affect pre-mRNA alternative
splicing, usually causing inappropriate exon skipping [42]. Our
result indicates that four types of exon skipping, intron
retention, alternative 5’ splice site and alternative 3’ splice site
in SLE-iPSCs are higher than those in control-iPSCs. Exon
skipping in SLE-iPSCs is the biggest difference among the
four types of alternatives. Studies have shown that up to 50%
of point mutations responsible for genetic diseases in humans
cause aberrant splicing [43,44]. The most common phenotype
of point mutations that affect splicing, however, is exon
skipping [43,45]. A family-based analysis of Caucasian and
Chinese populations shows a significant association between
the major alleles of a three alternative splicing CR2 and lupus
susceptibility [46]. KB Douglas et al. also confirm the
association of these three CR2 variants, and identify two
additional CR2 variants significantly associated with SLE
susceptibility. Therefore, aberrant exon skipping is closely
related to the pathogenesis of SLE, and as the most common
phenotype of alternatives because it is not usually amenable to
correction.

Conclusion
The high-throughput Illumina sequencing technology is a
powerful approach to identification of differentially expressed
genes. We used the Illumina sequencing technology to detect
the mRNAs expression in SLE-iPSCs group and control-iPSCs
group; 4,254 genes were detected at least two-fold difference
between the SLE-iPSCs and control-iPSCs, 2,856 genes were
up-regulated and 1,398 down-regulated. Some differentially
expressed genes only express in SLE-iPSCs or control-iPSCs.
The 4,254 differentially expressed genes were annotated in
Gene Ontology (GO) and KEGG pathway analysis. We found
that the DEGs involved in 9 cellular components, 9 molecular
functions, 8 biological processes and 6 pathways with p-value
≤ 0.05. The clusters of “cellular process”, “intracellular” and
“binding” represented the largest group in Process Ontology,
Component Ontology, Function Ontology, respectively. Most
differentially expressed genes involved in Function of binding,

which were reported to be relevant with RNA transcription in
SLE. Moreover, we also proceeded with other downstream
analysis including gene structure refinement, alternative
splicing and novel transcript prediction. Alternative splicing
events and gene structure refinement of SLE-iPSCs group were
greater than those of control-iPSCs group. The results clearly
showed that different organisms had different levels of
alternative splicing, as well as alternatively spliced genes.
Occurrence and development of SLE may be related to the
excessive alternatively spliced genes and events of alternative
splicing. In the future, further investigation is necessary for
using large cohorts of patient samples with long-term clinical
follow-up data, to assess the usefulness of the pathogenesis of
SLE.
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