The clinical effects of multi-modal analgesia on postoperative pain and nosocomial infection in patients with lower limb fracture.

Hong-Bo Li1, Shou-Hui Xu2*

1Department of Operating Room, the First Hospital of Jilin University, Changchun, Jilin, PR China
2Department of Sports Medicine, the First Hospital of Jilin University, Changchun, Jilin, PR China

Abstract

Background: Our objective is to explore the effect of multi-modal analgesia on postoperative pain and nosocomial infection in patients with lower limb fracture.
Methods: 84 patients with lower limb fracture were selected. The Visual Analogue Scale (VAS) scores, adverse reactions and the incidence rates of nosocomial infection after surgery were observed and compared.
Results: The VAS scores at 1 h, 2 h, 24 h, 2 d and 3 d after surgery in the control group were 7.5 ± 0.32, 5.4 ± 0.38, 3.8 ± 0.42, 1.8 ± 0.54 and 1.5 ± 0.25 respectively, which were 6.3 ± 0.28, 3.8 ± 0.29, 2.4 ± 0.48, 1.3 ± 0.32, 1.1 ± 0.36 in the observation group respectively, there were significant difference between two groups (p<0.05). The incidence rates of postoperative adverse reactions such as respiratory depression, headache, nausea, vomiting and somnolence was 45.2% in the control group and 19.1% in the observation group, there was significant difference between two groups (p<0.05). The rates of nosocomial infection was 40.4% in the control group and 14.4% in the observation group, there was significant difference between two groups (p<0.05).
Conclusions: In conclusion, the effect of multi-modal analgesia is significantly better than the single conventional analgesia mode in patients with lower limb fracture.

Keywords: Multi-modal analgesia, Patients with lower limb fracture, Postoperative pain, Nosocomial infection.

Materials and Methods

Clinical data
84 patients with lower limb fracture between May 2011-June 2012 were selected. The age was 32-75 y, the average age was 46.4 ± 51.8 y, and the median age was 48.6 y. There were 58 male cases and 26 female cases. The patients were divided into control group and observation group according to the analgesia mode in lower limb surgery with 42 cases in either group. In the control group, the age was 33-75 y, the average age was 45.1 ± 4.69 y, and there were 28 male cases and 14 female cases. The general data of two groups were not significantly different (p>0.05).

Methods
The patients in the control group received conventional analgesia mode: the patients were administrated with morphine or opioid drug for analgesia. The patients in the observation group received multi-modal anesthesia: first the analgesia knowledge was introduced to patients to comfort them, and a
comfortable environment was created for patients, during examination and nursing the stimulus was avoided as much as possible; analgesia drug: multiple target point drugs were administrated before, intra and after surgery instead of drug administration according to need.

Indicators

The Visual Analogue Scale (VAS) scores, adverse reactions (nausea, somnolence, respiratory depression, headache and vomiting) and the incidence rates of nosocomial infection at 1 h, 2 h, 24 h, 2 d and 3 d after surgery in the control group and observation group were observed and compared.

Criteria

The scoring of postoperative pain was referred to the VAS criteria; the score range was 0-10 which represents different pain degrees [16].

Statistical analysis

SPSS16.0 was used to analyze the data. The enumeration data were analyzed by X^2 test, the measurement data were analyzed by t test. P<0.05 was considered as statistically significant.

Results

Comparison of postoperative pain scores between two groups

The VAS scores at 1 h, 2 h, 24 h, 2 d and 3 d after surgery in the control group were significantly higher than the observation group respectively, there was significant difference between two groups (p<0.05), as shown in Table 1.

<table>
<thead>
<tr>
<th>Group</th>
<th>Control group</th>
<th>Observation group</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number (n)</td>
<td>42</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 h after surgery</td>
<td>7.5 ± 0.32</td>
<td>6.3 ± 0.28</td>
<td>-18.29</td>
<td>P<0.05</td>
</tr>
<tr>
<td>6 h after surgery</td>
<td>5.4 ± 0.38</td>
<td>3.8 ± 0.29</td>
<td>-21.69</td>
<td>P<0.05</td>
</tr>
<tr>
<td>24 h after surgery</td>
<td>3.8 ± 0.42</td>
<td>2.4 ± 0.48</td>
<td>-14.23</td>
<td>P<0.05</td>
</tr>
</tbody>
</table>

Comparison of surgical adverse events between the two groups

The incidence rates of postoperative adverse reactions such as respiratory depression, headache, nausea, vomiting and somnolence in the control group were significantly higher than the observation group, there was significant difference between two groups (p<0.05), as shown in Table 2.

<table>
<thead>
<tr>
<th>Group</th>
<th>Control group</th>
<th>Observation group</th>
<th>X^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number (n)</td>
<td>42</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>4.8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory depression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>3</td>
<td>1</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>2</td>
<td>1</td>
<td>2.4</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of nosocomial infection between two groups

The nosocomial infection sites in two group were mainly respiratory tract, urinary tract, incision, skin and lung, the infection rates of above sites in the control group were significantly higher than the observation group, there was significant difference between two groups (p<0.05), as shown in Table 3.

Discussion

In the recent years, as the increase of activity range and traffic accident, the incidence rate of lower limb fracture is increasing year by year [17,18]. The most common method to treat lower limb fracture is surgery, which has high invasiveness, causes severe trauma and big blood loss [19,20]. Thus, the rate of infection is increased. Hospital is a place that pathogenic bacteria gather, and postoperative weakness, poor immunity and haemorrhage in patients even increase the rate of nosocomial infection [21]. Nosocomial infection can aggravate the condition, and patients have to bear more psychological and economic burden. Thus, infection control is significant in treating lower limb fracture patients. Due to the big invasiveness and surgical wound in lower limb fracture surgery, another common concern in fracture patients is pain [22]. If the pain is not properly controlled, the pathological change possibility of central nervous system is increased, which increases the pain sense during surgery and after surgery and decreases the satisfaction degree of patients to the surgery [23].
The clinical effects of multi-modal analgesia on postoperative pain and nosocomial infection in patients with lower limb fracture

Table 3. Comparison of nosocomial infection between two groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>Control group</th>
<th>Observation group</th>
<th>X²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number (n)</td>
<td>42</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>5 (11.9)</td>
<td>2 (4.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>3 (7.1)</td>
<td>1 (2.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection of incision</td>
<td>4 (9.5)</td>
<td>2 (4.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin infection</td>
<td>3 (7.1)</td>
<td>1 (2.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung infection</td>
<td>2 (4.8)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The total incidence rate of infection</td>
<td>40.4 (11.9)</td>
<td>14.4 (4.8)</td>
<td>-16.98</td>
<td><0.05</td>
</tr>
</tbody>
</table>

In this study, 84 patients with lower limb fracture received conventional analgesia mode and multi-modal analgesia during surgery were studied to observe the analgesia effects of two modes and the effects on nosocomial infection. As shown in the results, the postoperative VAS score in multi-modal analgesia group was significantly lower than the conventional analgesia mode group, indicating that the analgesia effect of multi-modal analgesia is significantly better than the conventional analgesia mode. In the adverse reaction results, the incidence rate of adverse reactions in the multi-modal analgesia group was significantly lower than the conventional analgesia group. Analgesia is a complex process, which is a process of nerve conduction and transmission [24,25]. Single conventional analgesia has poor analgesia effect and causes adverse reactions [26,27]. However, multi-modal analgesia has various patterns and mechanisms, which have different target points and time phases [11,13]. Thus, analgesia drug can increase the analgesia effect and effectively reduce the adverse reaction by targeting on different points and by the synergistic effect [11]. In the nosocomial infection results, the rate of nosocomial infection in single analgesia mode group was 40.4% which was significantly higher than 14.4% in multi-modal analgesia group. In the results of nosocomial infection sites, respiratory tract and incision were the main postoperative infection sites in patients with lower limb fracture, which was in accordance with the reference. It indicates that multi-modal analgesia has significant effect in preventing and treating nosocomial infection in patients with lower limb fracture.

In conclusion, the effect of multi-modal analgesia is significantly better than the single conventional analgesia mode in patients with lower limb fracture, the adverse reactions are also less than the single conventional analgesia mode. Furthermore, multi-modal analgesia can effectively prevent nosocomial infection. It is worthy of further research on multi-modal analgesia.

Conflicts of Interest

The authors have declared that no competing interests exist.

References

*Correspondence to
Shou-Hui Xu
Department of Sports Medicine
The First Hospital of Jilin University
Changchun
Jilin
PR China