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Abstract 
 

Tottering mouse is an ataxic mutant that carries a mutation in a gene encoding for the �1A 
subunit of P/Q-type Ca2+ channel (Cav2.1), and exhibits Purkinje cells loss with the zebrin II 
immunonegative population in the anterior vermis and the zebrin II immunopositive popula-
tion in the caudal vermis. This study aimed to clarify relationship between patterns of Pur-
kinje cell loss in the tottering cerebellum with expression of non-phosphorylated forms of the 
neurofilament heavy chain (NFH), which was recognized by ani-SMI-32. SMI-32 immu-
nostaining has appeared in particular subsets of Purkinje cells, which were organized into 
parasagittal stripes throughout the cerebellar cortex of control mice. In tottering mice, 
SMI-32 stripes in the vermis disappeared from the a selective loss of SMI-32 immunopositive 
Purkinje cells. When the phosphorylation state of NFH was examined immunohistochemi-
cally using anti-SMI-31, which recognizes phosphorylation epitopes of NFH, no Purkinje cell 
soma were labeled in either tottering or control mice. In addition, while a number of Purkinje 
cell axonal torpedoes were observed in tottering mice but not in control mice, all torpedoes 
were stained with both anti-SMI-32 and anti-SMI-31, revealing the presence of both phos-
phorylated and non-phosphoryalted forms of NFH in the torpedoes. These results predict 
that the non-phosphorylated form of NFH expressing cerebellar Purkinje cells is susceptible 
to the Cav2.1 gene defect to degenerate those neurons. This may result in the characteristic 
parasagittal pattern of Purkinje cell loss in tottering mice. 
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Introduction 
 
Tottering mouse carries a recessive autosomal allele of the 
tottering locus (tg) on chromosome 8 which encodes a 
gene for the �1A subunit of the P/Q-type Ca2+ channel 
(CaV2.1) [1], and is characterized by mild ataxia, general-
ized absence-like seizures (petit mal-like epilepsy), and 
paroxysmal dyskinesia [2]. In humans, defects in this 
gene are responsible for several neurological hereditary 
diseases such as familial hemiplegic migraine (FHM) and 
episodic ataxia type-2 (EA-2) [3]. Although it has been 
reported that several mutant mice such as leaner [4], roll-
ing [5], rocker [6], and wobbly [7] bear the CaV2.1 gene 
defects, phenotypic features vary among them. For exam-
ple, the severity of ataxia is mild in tottering and rocker, 
moderate in rolling, and more severe in leaner [6;8;9]. 

Since human patients with EA-2 and FHM exhibit pro-
gressive cerebellar atrophy and Purkinje cell loss [10–12], 
Purkinje cell degeneration is thought to be one of the 
causes of cerebellar atrophy in those human Ca2+ channe-
lopathies. Purkinje cells of the cerebellar cortex form a 
complex arrangement of parasagittal stripes and trans-
verse zones, which are reflected in the diversity of the 
expression patterns of several genes such as zebrin II 
[13-15], heat shock protein 25 (HSP25) [16], phospholi-
pase Cß3 (PLCß3) [17], phospholipase Cß4 (PLCß4) 
[17;18], and human natural killer cell antigen 1 (HNK-1) 
[19;20]. While some Cav2.1 mutant mice experienced 
Purkinje cell degeneration after completion of histogene-
sis of the cerebellar cortex [21–23], that cell degeneration 
is related to zebrin II-defined compartments in the cerebe-
llum. Purkinje cells are selectively lost in both zebrin II-  
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negative compartments of the anterior vermis and zebrin 
II-positive compartments of the caudal vermis in tottering 
mice [23], but they are limited in zebrin II-negative com-
partments of the anterior vermis in leaner mice [24]. Thus, 
susceptibility of zebrin II-positive/negative Purkinje cell 
phenotypes to the Cav2.1 gene defect differs depending on 
the region. Recently, a non-phosphorylated form of neu-
rofilament protein heavy chain subunit (NFH) was recog-
nized as a cerebellar compartmentation antigen, which 
showed a unique expression pattern complementary to 
zebrin II strips in the anterior (lobules I-V of the vermis) 
and posterior (lobules VII-IXa of the vermis) zones, and 
to HSP25 stripes in the central (lobule VI and VII of the 
vermis) and nobular zones (lobules IXb and X) [25]. The 
non-phosphorylated NFH expression pattern is reminis-
cent of the pattern of Purkinje cell degeneration in Cav2.1 
mutant mice. The present study, therefore, was undertaken 
to clarify these topological relationships in the cerebellum 
of tottering mice by using immunohistochemical tech-
nique. 
 
Materials and Methods 
  

Both sexes of heterozygous tottering mice 
(C57BL/6J:tg/+) were obtained from Jackson Laborato-
ries (Bar Harbor, ME). Homozygous tottering 
(C57BL/6J:tg/tg) mice were raised by intercrossing the 
heterozygous pairs. Wild-type (C57BL/6J:+/+) mice were 
used as controls.  Mice were given a pellet diet (NMF, 
Oriental Yeast Co., Ltd., Japan) and tap water ad libitum, 
and were kept at 24 ± 1 � under 12-hour artificial illumi-
nation. The Institutional Animal Care and Use Committee 
of the University of Tokushima approved the procedures, 
and all efforts were made to minimize the number of ani-
mals used and their suffering. 
 

A total of 4 male tottering and 4 male control mice at 12 
months were deeply anesthetized with an intraperitoneal 
injection of sodium pentobarbital (25 �g/10 g body 
weight), and were perfused with 0.9% NaCl followed by 
4% paraformaldehyde and 0.2% picric acid in a 0.1 M 
phosphate buffer, pH 7.4. Cerebella were immersed in the 
same fixative, embedded in paraffin and sectioned serially 
in the coronal plane (tottering: n=4; control: n=4) at 3 �m. 
Deparaffinized sections were irradiated with microwaves 
for 5 min in 10 mM citrate buffer, pH 6.0, and processed 
for immunohistochemistry. 
 

For single immunostaining, sections were reacted over-
night with a mouse anti-SMI-32 monoclonal antibody 
(1:1,000, Covance, Princeton, NJ, USA) or a mouse 
anti-SMI-31 monoclonal antibody (1:10,000, Covance, 
Princeton, NJ, USA), containing 10% normal goat serum 
at 40C. Anti-SMI-32 and anti-SMI-31 recognized 
non-phosphorylated and phosphorylated epitopes of NFH, 
respectively. After incubation, sections were rinsed with 
PBS and reacted with a biotinylated goat anti-mouse IgG. 

The immunoreactive products were visualized by a Vec-
tastain elite ABC kit (Vector Lab., Inc., Burlingame, CA) 
using 0.01% 3,3’-diaminobenzidine tetrachloride in 
0.03% H2O2 as a chromogen.  
 

For double immunostaining, sections were double-labeled 
with a combination of a rabbit anti-Calbindin D-28k 
(CaBP) polyclonal antibody (1:5,000, Swant, Switzer-
land) with a mouse anti-SMI-32 monoclonal antibody 
(1:500) containing 10% normal goat serum at 4 �. After 
washing with PBS, the sections were reacted with a mix-
ture of an Alexa 594-labeled goat anti-rabbit IgG antibody 
(1:200, Molecular Probes, Eugene, OR, USA) and an Al-
exa 488-labeled goat anti-mouse IgG (1:200, Molecular 
Probes). Images of double-immunostained sections were 
acquired with a fluorescence microscope (Axioskop 2 
plus; Zeiss, Gottingan, Germany) using Axiovison 4.2 
software (Zeiss). 
 
Results 
 

Consistent with a previous study [25], SMI-32 immu-
nostaining appeared in Purkinje cell soma, dendrites and 
axons, and in basket cell axons in the cerebellar cortex of 
control mice (Fig. 1A). SMI-32 immunostaining in the 
Purkinje cell soma was not evenly distributed through all 
Purkinje cells. The intensity of SMI-32 staining in trans-
verse sections varied so that rows of strongly stained Pur-
kinje cell soma were interspersed by weakly stained or 
unstained Purkinje cell soma (Fig. 1A, 1D, 1F). Such dif-
ferences were reproducible and not the result of technical 
variation. In the present study, therefore, we used the term 
SMI-32 ‘positive’ (+) to refer to Purkinje cells those that 
were labeled with the anti-SMI-32 at high and medium 
levels and ‘negative’ (−) for those that were labeled at 
low levels or not at all. 
 

SMI-32+ Purkinje cells were aligned in a striking pattern 
of stripes throughout the cerebellar cortex in control mice 
(Fig. 1C, 1E), corresponding to a pattern from a the pre-
vious study [25]. SMI-32 immunostaining was relatively 
intense in the anterior vermis but weaker in the caudal 
vermis. In tottering mice, SMI-32+ stripes were lost in the 
anterior and caudal vermis (Fig. 1C, 1E). Using double 
imunofluorescence for SMI-32 and CaBP, a number of 
double-labeled Purkinje cells were found in control mice, 
while those neurons were lost in the cerebellum of totter-
ing mice (Fig. 2). In order to examine the phosphorylation 
state of NFH in the Purkinje cells of tottering mice, 
SMI-31 immunostaining was carried out. SMI-31 immu-
nostaining appeared in the pinceau of basket cell axonal 
terminals and Purkinje cell axons, but not in Purkinje cell 
soma in control mice (Fig. 1B), suggesting that NFH is 
present in the Purkinje cell soma in a  non-phosphory 
lated form. There was no difference in SMI-31 immu-
nostaining in the cerebrum of between tottering and con-
trol mice (Fig. 1G, 1H). 
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Figure 1. SMI-32 and SMI-31 immunostaining in the cerebellar cortex of tottering and control 
mice. A: A High magnification photograph of SMI-32 immunostaining in cerebellar cortex of 
control mouse. B: High magnification photograph of SMI-31 immunostaining in cerebellar cortex 
of control mouse. C. SMI-32 immunostaining in anterior vermis of tottering mouse. D: SMI-32 
immunostaining in anterior vermis of control mouse. E: SMI-32 immunostaining in posterior 
vermis of tottering mice. F: SMI-32 immunostaining in caudal vermis of control mouse. G. 
SMI-31 immunostaining in anterior vermis of tottering mouse. H: SMI-31 immunostaining in an-
terior vermis of control mouse. Open arrowheads indicate boundaries between SMI-31+/- stripes. 
Closed arrowhead indicates SMI-31+ pinceau of basket cell axonal terminals. Bar and asterisks 
(*) indicate areas in which Purkinje cell were lost. Scale Bar = 50 µm. 
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Figure 2. Double immunefluorescence for Calbindin D-28 k (CaBP) (green) and 
SMI-32 (red) with DAPI (blue) in the cerebellar cortex of tottering and control 
mice. A. Lobule II of vermis of tottering mouse. B. Lobule II of vermis of control 
mouse. C. Lobules IX and X of the vermis of tottering mice. D. Lobules IX and X of 
vermis of control mouse. Closed arrowheads in (A) and (B) indicate Purkinje cells 
stained with CaBP but not with SMI-32. Open arrowheads in (C) and (D) indicate 
CaBP and SMI-32 double-stained Purkinje cells. Both regions of cerebellar cortex of 
tottering mice, CaBP, and SMI-32 double-stained Purkinje cells were prominently 
lost. Bar = 100 µm. 

 

 
 

Figure 3. Axonal torpedoes of Purkinje cells in the cerebellar cortex of tottering mice. A. SMI-32+ 
torpedoes in SMI-32+ Purkinje cell stripes. B. SMI-32+ torpedoes in SMI-32- Purkinje cell stripes. C. 
SMI-31+ torpedoes. Each torpedo is indicated by open arrowheads. Bar = 50 µm. 

 
A number of torpedoes (or abnormal swellings) of Pur-
kinje cell axons in the tottering cerebellum were defined 
by SMI-32 (Fig. 3). Interestingly, SMI-32+ torpedoes 
were observed in both SMI-32+/- Purkinje cell stripes, 

suggesting the presence of SMI-32+ torpedoes in the Pur-
kinje cells even if the perikarya of those neurons did not  
express the SMI-32 antigen. Furthermore, a number of 
SMI-31+ Purkinje cell axonal torpedoes were also seen in 
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the tottering cerebellum (Fig. 3), revealing the presence of 
both phosphorylated and non- phosphorylated forms of 

NFH in the torpedoes. 
                                                               

 
Discussion 
 
Our previous study revealed that Purkinje cells were pref-
erentially degenerated in zebrin II- compartments in the 
anterior vermis and zebrin II+ compartments in the caudal 
vermis [23]. The results seemed to be inconsistent be-
cause both zebrin II+ and zebrin II- Purkinje cell pheno-
types had degenerated. 
 
A striking pattern of SMI-32+ Purkinje cell stripes was 
reported by Demilly et al. [25]. They clearly showed a 
topographic relation of SMI-32+ stripes with cerebellar 
compartmentation antigens [13–15], HSP25 [16], PLCß3 
[17], PLCß4 [17;18], and HNK-1 [19;20]. In the present 
study, Purkinje cells were selectively lost within SMI-32+ 
stripes in both the anterior and caudal vermis of the tot-
tering cerebellum. Thus, Purkinje cell degeneration in the 
tottering cerebellum may occur in relation to 
SMI-32-defined compartments rather than in zebrin 
II-defined compartments. 
 
Accumulation of neurofilament-rich inclusions in neurons 
has been reported in age-related neurodegenerative dis-
eases such as Creutzfeldt-Jakob disease and Parkinson’s 
disease [26–31]. However, Purkinje cell soma was not 
stained with anti-SMI-31 in either group of mice in the 
present study, suggesting that NFH is present in the Pur-
kinje cell soma in a non-phosphorylated form in aged tot-
tering and control mice. Therefore, age-related Purkinje 
cell degeneration in the tottering cerebellum may not in-
volve phosphorylation of NFH and accumulation of 
phosphorylated NFH in Purkinje cell soma. 
 
Axonal torpedoes of Purkinje cells are developed in the 
cerebellum of Cav2.1 mutant mice [8;32–34], including 
tottering mice [36]. The present study revealed the pres-
ence of both phosphorylated and non-phosphorylated 
forms of NFH in the Purkinje cell axonal torpedoes of the 
tottering cerebellum. A malaccumulation of phosphory-
lated NFH in Purkinje cell torpedoes is also found in hu-
man patients with essential tremor [37]. Similar neuro-
filament-filled axonal swellings (spheroids) have been 
reported in spinal motoneuron diseases such as amyotro-
phic lateral sclerosis and infantile spinal muscular atrophy 
[38–41]. Abnormal axonal swellings such as torpedoes 
and spheroids are a neuropathological signs of axonal 
transport impairments [42] that lead to abnormal accu-
mulations of axonal intermediate filaments and occasion-
ally neuronal degenerative changes [41;43]. However, it is 
unclear if there is a relationship between Purkinje cell 
degeneration and the development of axonal torpedoes in 
the present study, because the torpedoes were observed in 
both SMI-32+/- compartments in the tottering cerebellum. 

Further studies will be needed to clarify the mechanisms 
underlying Purkinje cell degeneration in SMI-32+ com-
partments in the cerebellum of aged tottering mice. 
 
In conclusion, the present study reveals a selective loss of 
Purkinje cells in SMI-32-defined cerebellar compartments 
in aged tottering mice. An elucidation of Purkinje cell 
phenotypes related to the age-related degeneration of 
those neurons in tottering mice may well be the key to 
understanding the mechanisms of Purkinje cell degenera-
tion by Cav2.1 gene mutation. 
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