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Abstract

Tottering mouse is an ataxic mutant that carries a mutation in a gene encoding for the [
subunit of P/Q-type Ca?* channel (Ca,2.1), and exhibits Purkinje cells loss with the zebrin 11
immunonegative population in the anterior vermis and the zebrin |1 immunopositive popula-
tion in the caudal vermis. This study aimed to clarify relationship between patterns of Pur-
kinje cell loss in the tottering cerebellum with expression of non-phosphorylated forms of the
neurofilament heavy chain (NFH), which was recognized by ani-SM1-32. SM1-32 immu-
nostaining has appeared in particular subsets of Purkinje cells, which were organized into
parasagittal stripes throughout the cerebellar cortex of control mice. In tottering mice,
SM1-32 stripesin the vermis disappeared from the a selective loss of SM1-32 immunopositive
Purkinje cells. When the phosphorylation state of NFH was examined immunohistochemi-
cally using anti-SM1-31, which recognizes phosphorylation epitopes of NFH, no Purkinje cell
soma were labeled in either tottering or control mice. In addition, while a number of Purkinje
cell axonal torpedoes were observed in tottering mice but not in control mice, all torpedoes
were stained with both anti-SM1-32 and anti-SM1-31, revealing the presence of both phos-
phorylated and non-phosphoryalted forms of NFH in the torpedoes. These results predict
that the non-phosphorylated form of NFH expressing cerebellar Purkinje cells is susceptible
to the Ca,2.1 gene defect to degenerate those neurons. This may result in the characteristic
parasagittal pattern of Purkinjecell lossin tottering mice.
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Introduction Since human patients with EA-2 and FHM exhibit pro-
gressive cerebellar atrophy and Purkinje cell [28s-12],

Totteringmouse carries a recessive autosomal allele of tHgurkinje cell degeneration is thought to be onethef
tottering locus fg) on chromosome 8 which encodes acauses of cerebellar atrophy in those humefti Elzanne-
gene for thel ;4 subunit of the P/Q-type &achannel lopathies. Purkinje cells of the cerebellar corfesm a
(Ca,2.1) [1], and is characterized by mild ataxia, gahe complex arrange_ment of parasagl_ttal strlp_es andsitra
ized absence-like seizurepefit matlike epilepsy), and Verse zones, which are reflected in the diversitghe
paroxysmal dyskinesia [2]. In humans, defects iis th €XPression patterns of sgveral genes such as zpbrln
gene are responsible for several neurological ftargd [13-15], heat shock protein 25 (HSP25) [16], phagih
diseases such as familial hemiplegic migraine (Fanty Pase CR3 (PLCB3) [17], phospholipase CR4 (PLCR4)
episodic ataxia type-2 (EA-2) [3]. Although it haeen [17;18], and_human natural killer cell antigen ]J\KII_Gl)
reported that several mutant mice sucheaser([4], roll- ~ [19;20]. While some G&.1 mutant mice experienced
ing [5], rocker [6], andwobbly [7] bear the Cg2.1 gene Purkinje cell degeneration after completion of dugne-
defects, phenotypic features vary among them. kame SIS of the cerebe_llar cortex [21-23], that cell _eiwaﬂon
ple, the severity of ataxia is mild tottering androcker, IS related to zebrin Il-defined compartments in dbesbe-
moderate imolling, and more severe laaner[6;8;9]. llum. Purkinje cells are selectively lost in botbrin II-
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negative compartments of the anterior vermis armtize The immunoreactive products were visualized by e- Ve
lI-positive compartments of the caudal vermigatiering  tastain elite ABC kit (Vector Lab., Inc., BurlingamCA)
mice [23], but they are limited in zebrin ll-negaticom- using 0.01% 3,3'-diaminobenzidine tetrachloride in
partments of the anterior vermis in leaner micq.[Z#us, 0.03% HO, as a chromogen.

susceptibility of zebrin ll-positive/negative Pujé cell ) o )

phenotypes to the Gal gene defect differs depending onFor double immunostaining, sections were doublettzb
rofilament protein heavy chain subunit (NFH) wasog ~ (CaBP) polyclonal antibody (1:5,000, Swant, Switzer
nized as a cerebellar compartmentation antigenctwhi 1and) with a mouse anti-SMI-32 monoclonal antibody
showed a unique expression pattern complementary {4:500) containing 10% normal goat serum at 4After
zebrin 11 strips in the anterior (lobules I-V ofetivermis) ~ Washing with PBS, the sections were reacted withixa
and posterior (lobules VII-IXa of the vermis) zonesd ture of an Alexa 594-labeled goat anti-rabbit Ig@itzody

to HSP25 stripes in the central (lobule VI and ®ithe ~ (1:200, Molecular Probes, Eugene, OR, USA) and lan A
vermis) and nobular zones (lobules IXb and X) [#je  €xa 488-labeled goat anti-mouse 1gG (1:200, Mokecul
non-phosphorylated NFH expression pattern is resini Probes). Images of double-immunostained sectiorre we
cent of the pattern of Purkinje cell degeneratio©g2.1 ~ acquired with a fluorescence microscope (Axioskop 2
mutant mice. The present study, therefore, wasrtaiden ~ PIUS; Zeiss, Gottingan, Germany) using AxiovisoR 4.
to clarify these topological relationships in theebellum  Software (Zeiss).

of tottering mice by using immunohistochemical tech-
nique. Results

; Consistent with a previous study [25], SMI-32 immu-
Materials and Methods nostaining appeared in Purkinje cell soma, derslaied
Both sexes of heterozygoustottering mice axons, and in basket cell axons in the cerebetigtex of

(C57BL/6Jtg/+) were obtained from Jackson Laborato-control mice (Fig. 1A). SMI-32 immunostaining ineth
ries (Bar Harbor, ME). Homozygoustottering Purk!nj_e cell soma was not evenly dlstrlbu_te_d tlg_lh)lall
(C57BL/6Jtgltg) mice were raised by intercrossing thePurkinje cells. The intensity of SMI-32 staining trans-
heterozygous pairs. Wild-type (C57BL/6J:+/+) micerey  Verse sections varied so that rows of strongl)net‘hP_ur-
used as controls. Mice were given a pellet digvigN  Kinje cell soma were interspersed by weakly staioed
Oriental Yeast Co., Ltd., Japan) and tap watkfibitum ~ unstained Purkinje cell soma (Fig. 1A, 1D, 1F). lsdi-
and were kept at 24 +[1 under 12-hour artificial illumi- ferences were reproducible and not the resultdafrtieal
nation. The Institutional Animal Care and Use Cottmei  Variation. In the present study, therefore, we ubederm
of the University of Tokushima approved the procedy SMI-32 “positive’ (+) to refer to Purkinje cellsdbe that

and all efforts were made to minimize the numbearif ~ Were labeled with the anti-SMI-32 at high and metiu
mals used and their suffering. levels and ‘negative’ (-) for those that were |aoeht

low levels or not at all.
A total of 4 maletottering and 4 male control mice at 12 . _ _ .
months were deeply anesthetized with an intrapesab SMI-32+ Purkinje cells were aligned in a strikingtgern
injection of sodium pentobarbital (25/g/10 g body of_strlpes throughout the qerebellar cortex in camice
weight), and were perfused with 0.9% NaCl followsd  (Fig. 1C, 1E), corresponding to a pattern from e fhe-
4% paraformaldehyde and 0.2% picric acid in a 0.1 MWious study [25]. SMI-32 immunostaining was relativ
phosphate buffer, pH 7.4. Cerebella were immensatld  Intense in the anterior vermis but weaker in thadeh
same fixative, embedded in paraffin and sectiomelyy ~ Vermis. Intottering mice, SMI-32+ stripes were lost in the
in the coronal planedttering n=4; control: n=4) at 3ym.  anterior and caudal vermis (Fig. 1C, 1E). Usinghdeu
Deparaffinized sections were irradiated with micaves imunofluorescence for SMI-32 and CaBP, a number of

for 5 min in 10 mM citrate buffer, pH 6.0, and pessed double-labeled Purkinje cells were found in contrite,
for immunohistochemistry. while those neurons were lost in the cerebellurtotiér-

ing mice (Fig. 2). In order to examine the phosphdigta
For single immunostaining, sections were reacteer-ov state of NFH in the Purkinje cells dbttering mice,
night with a mouse anti-SMI-32 monoclonal antibodySMI-31 immunostaining was carried out. SMI-31 immu-
(1:1,000, Covance, Princeton, NJ, USA) or a mouseostaining appeared in the pinceau of basket gelhal
anti-SMI-31 monoclonal antibody (1:10,000, Covanceterminals and Purkinje cell axons, but not in Pujekicell
Princeton, NJ, USA), containing 10% normal goatiser soma in control mice (Fig. 1B), suggesting that NEH
at £C. Anti-SMI-32 and anti-SMI-31 recognized present in the Purkinje cell somaina non-phospho
non-phosphorylated and phosphorylated epitopes=f,N lated form. There was no difference in SMI-31 immu-
respectively. After incubation, sections were rthggth  nostaining in the cerebrum of betwetettering and con-
PBS and reacted with a biotinylated goat anti-mdg&  trol mice (Fig. 1G, 1H).
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Figure 1. SMI-32 and SMI-31 immunostaining in the cerebellar cortex of tottering and control
mice. A: A High magnification photograph of SMI-32 inmostaining in cerebellar cortex of
control mouse. B: High magnification photographsSdfl-31 immunostaining in cerebellar cortex
of control mouse. C. SMI-32 immunostaining in aotevermis of tottering mouse. D: SMI-32
immunostaining in anterior vermis of control moug&e.SMI-32 immunostaining in posterior
vermis of tottering mice. F: SMI-32 immunostainiimgcaudal vermis of control mouse. G.
SMI-31 immunostaining in anterior vermis of tottgyimouse. H: SMI-31 immunostaining in an-

terior vermis of control mouse. Open arrowheadsdate boundaries between SMI-31+/- stripes.

Closed arrowhead indicates SMI-31+ pinceau of baskd# axonal terminals. Bar and asterisks
(*) indicate areas in which Purkinje cell were loSicale Bar = 50 um.
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Figure 2. Double immunefluorescence for Calbindin D-28 k (CaBP) (green) and
SMI-32 (red) with DAPI (blue) in the cerebellar cortex of tottering and control
mice. A. Lobule Il of vermis of tottering mouse. B. La&bll of vermis of control
mouse. C. Lobules IX and X of the vermis of totgerice. D. Lobules IX and X of
vermis of control mouse. Closed arrowheads in (&J &) indicate Purkinje cells
stained with CaBP but not with SMI-32. Open arroade in (C) and (D) indicate
CaBP and SMI-32 double-stained Purkinje cells. Betfions of cerebellar cortex of
tottering mice, CaBP, and SMI-32 double-stainedKitye cells were prominently
lost. Bar = 100 pm.

Figure 3. Axonal torpedoes of Purkinje cells in the cerebellar cortex of tottering mice. A. SMI-32+
torpedoes in SMI-32+ Purkinje cell stripes. B. SB&+ torpedoes in SMI-32- Purkinje cell stripes. C.
SMI-31+ torpedoes. Each torpedo is indicated byropeowheads. Bar = 50 pm.

A number of torpedoes (or abnormal swellings) of-Pu suggesting the presence of SMI-32+ torpedoes iR the
kinje cell axons in theottering cerebellum were defined kinje cells even if the perikarya of those neurditsnot

by SMI-32 (Fig. 3). Interestingly, SMI-32+ torpedoe express the SMI-32 antigen. Furthermore, a numiber o
were observed in both SMI-32+/- Purkinje cell stsp SMI-31+ Purkinje cell axonal torpedoes were alsnsae
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thetottering cerebellum (Fig. 3), revealing the presence oNFH in the torpedoes.

both phosphorylated and non- phosphorylated forins o

Further studies will be needed to clarify the medsras
underlying Purkinje cell degeneration in SMI-32+1E0

Discussion partments in the cerebellum of agettering mice.

Our previous study revealed that Purkinje cellsenmef-
erentially degenerated in zebrin [I- compartmentghie
anterior vermis and zebrin ll+ compartments in¢hadal
vermis [23]. The results seemed to be inconsisbeat
cause both zebrin I+ and zebrin 1l- Purkinje gaieno-
types had degenerated.

In conclusion, the present study reveals a sekedbiss of
Purkinje cells in SMI-32-defined cerebellar compeaents
in agedtottering mice. An elucidation of Purkinje cell
phenotypes related to the age-related degeneration
those neurons itottering mice may well be the key to
understanding the mechanisms of Purkinje cell degen

A striking pattern of SMI-32+ Purkinje cell stripegas tion by Cg2.1 gene mutation.

reported by Demilly et al. [25]. They clearly shalva
topographic relation of SMI-32+ stripes with cerédoe
compartmentation antigens [13-15], HSP25 [16], PA.C3

[17], PLCR4 [17:18], and HNK-1 [19:20]. In the pees The authors wish to deeply thank Prof. R. Hawkethef
study, Purkinje cells were selectively lost witiwI-32+ Department of Anatomy and Neuroscience Research

stripes in both the anterior and caudal vermisheftot- ~ Group, Faculty of Medicine, University of Calga-

tering cerebellum. Thus, Purkinje cell degeneration & th Perta, Canada, for generously providing the ariirizell
tottering cerebellum may occur in relation to monoclonal antibody. The authors also are indetuéds.

SMI-32-defined compartments rather than in zebrifisaki Watanabe of the Department of Nursing, Rgcul
ll-defined compartments. of Medical and Health Sciences, Tsukuba Internation
University, Tsuchiura, Ibaraki, Japan, for her ehlie
assistance.
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