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Abstract 
 

A great deal of effort during the past 27 years has been devoted to defining the chemical 
nature of prions, the infectious agents responsible for transmissible spongiform encepha-
lopathies. Prion diseases are fatal neurodegenerative disorders that can arise spontane-
ously, be inherited, or be acquired by infection in mammals. They are unique not only in 
terms of their biological features but also in terms of their impact on public health. It has 
been hypothesized that in addition to Creutzfeldt - Jakob disease (CJD) in humans and 
Bovine Spongiform Encephalopathy (BSE) in animals, prions may also play a role in sev-
eral other neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, 
amyotrophic lateral sclerosis, and frontotemporal dementia; however, the precise mecha-
nism underlying prion-mediated neurodegeneration still remains elusive. In this review, 
we outline the physico-chemical characteristics of prions and their impact on human and 
animal health.  
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Introduction 
 
Prion disease (PD) is an untreatable and fatal neurodegen-
erative disorder that affects both humans and animals. 
Since various aspects of PD pathogenesis have not been 
conclusively delineated, PD remains an intriguing puzzle 
waiting to be solved. Transmissible spongiform encepha-
lopathy (TSE) is the general term assigned to all known 
prion diseases. 
PD is the new designation of a group of spongiform en-
cephalopathies because of the histological appearances of 
large vacuoles in the cortex and cerebellum and all in-
variably fatal, which show similar clinical and neuropa-
thological changes. TSEs in sheep and goat is known as 
Scrapie; in humans, they are known as Kuru, Creutzfeldt-
Jakob disease (CJD), Gerstmann-Straussler-Scheinker 
syndrome (GSS) and fatal familial insomnia (FFI). Kuru 
has been described only in the Fore population of New 
Guinea. For many years after its first recognition in 1957 
[1], Kuru was the most common cause of death among 
women in the affected population, but it is disappearing 
because of the cessation of ritualistic cannibalism that had 
facilitated disease transmission [2]. The term chronic 
wasting disease is used in mules, deer [3] and Rocky 
Mountain elk [4], bovine spongiform encephalopathy 
(BSE) or mad cow disease is used in cattle and feline 

spongiform encephalopathy in cats, albino tigers, pumas 
and cheetahs. With the exception of FFI, all of these dis-
orders have been experimentally transmitted to nonhuman 
primates and laboratory rodents. Severe loss of neurons is 
a key characteristic for all prion diseases, accompanied by 
strong astrogliosis and mild microglia activation. This 
results in a progressive spongiform degeneration of the 
central nervous system (CNS) which manifests itself in 
ataxia, behavioral and, in humans, a highly progressive 
loss of intellectual abilities changes [5]. Though it was 
initially gestated to explain elusive neurodegenerative 
diseases in mammals, it has now grown to encompass a 
number of non-Mendelian traits in fungi [6, 7, 8]. 
 
The mode of transmission appears to be novel; a protein 
agent rather than a particle containing nucleic acid is in-
volved. However, the mechanism and propagation of PD 
still remain to be conclusively elucidated. Some key play-
ers associated with pathogenesis of the disease have been 
identified. The most important one is the protein agent 
that induces abnormal refolding of the normal prion pro-
tein. Aggregation of these misfolded proteins leads to the 
formation of dense plaques and fibers known as amyloid. 
The deposition of amyloid consequently results in cell 
death and tissue damage in the brain and spinal cord. 
Spongiform changes are associated with neuronal loss 
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during amyloid plaque formation; failure to elicit inflam-
matory responses is a major characteristic of degenerative 
tissue damage due to prion diseases (Fig.1). Most prions 
identified so far are self polymerized amyloids that form 
highly ordered cross-β fibrous aggregates. The yeast prion 
[PSI+] is a self-perpetuating amyloid of Sup35 [9], an 
evolutionarily conserved eukaryotic release factor that is 
required for the termination of translation [10, 11]. This 
review provides a basic understanding of the nature of 
prion proteins and highlights the etiology, replication, 
transmission and other clinical and pathologic features of 
these debilitating interesting diseases. 
 

Clinical Symptoms

Normal conformer (PrPc) Abnormal conformer (PrPsc) Amyloid plaque

Spongiform encephalopathy  
 
Figure 1. A model for the progression of transmissible 
spongiform encephalopathy (TSE) pathogenesis. 
 
Prion disease 
Prion diseases are rare and unusual neurodegenerative 
disorders of the nervous system caused by the accumula-
tion of a misfolded form of the endogenous PrP; these 
diseases present ongoing threats to humans and animals 
[12, 13]. Much about TSE diseases remain unknown. The 
diseases are characterized by certain misshapen protein 
molecules that appear in brain tissue. Prion diseases result 
in progressive cognitive and motor impairment and are 
characterized by the accumulation of proteinaceous brain 
lesions or plaques [14]. Sheep scrapie was the first of to 
be recognized, but subsequently a set of human diseases 
including Kuru and CJD was shown to have similar clini-
cal and pathological features. TSEs have now been identi-
fied in a wide range of mammals, including cats, cows, 
mink, deer and elk [15]. These diseases affect the struc-
ture of brain tissue and are all fatal and untreatable. Some 
of the distinctive features of TSEs include neuronal vacu-
olation (spongiosis), neuronal death, and glial reactions. 
In addition, a defining characteristic is the deposition of 
PrPsc, mainly in the brain and lymphoreticular tissues. 
Also, no adaptive immune responses are elicited upon 
infection, most likely because the mammalian immune 
system is largely tolerant to PrP from the same species. 
This is not surprising, given that many cells in neural and 
extraneural compartments express PrPc. Although TSEs 
are by definition transmissible, a growing number of 

Prnp-associated non-infectious, neurodegenerative protei-
nopathies are now also being recognized [16]. The only 
molecules thus far associated with infections are isoforms 
of PrP. These transmissible agents appear to have a com-
mon mechanism of pathogenesis and possibly a common 
origin. Some have spread across species barriers (trans-
missible mink encephalopathy and possibly new-variant 
CJD); some have reached epidemic proportions by enter-
ing the food chain (transmissible mink encephalopathy, 
bovine spongiform encephalopathy, and Kuru); and others 
have been inherited due to mutations in the PrP gene (fa-
milial CJD, GSS and FFI) [17]. Recent evidences suggest 
a role for the ubiquitin proteasome system (UPS) in prion 
disease. Both wild-type PrPc and disease associated  PrP 
isoforms accumulate in cells after proteasome inhibition 
leading to increased cell death and abnormal β-sheet-rich 
PrP isoforms have been shown to inhibit the catalytic ac-
tivity of the proteasome [18]. The hallmark feature com-
mon to all prion diseases, whether sporadic, dominantly 
inherited or acquired by infection, is that they involve 
aberrant metabolism of the prion protein. 
 
The Prion Hypothesis 
The nature of the agents responsible for TSEs has been 
the focus of intense scrutiny and considerable debate over 
the last few years. Research on the molecular genetics of 
PrP protein has contributed greatly to our knowledge of 
these diseases [19]. The observation that the scrapie agent 
was resistant to procedures that inactivate or modify nu-
cleic acids, but sensitive to treatments that denature pro-
teins, led to speculation that the agent could be a self-
replicating protein devoid of nucleic acids [20]. Based on 
these events, Stanley Prusiner in 1982 hypothesized the 
existence of a novel class of infectious agents, which he 
named prions [21]. Specifically, it was hypothesized that 
the scrapie agent was a proteinaceous infectious particle 
because infectivity was dependent on proteins and resis-
tant to methods known to inactivate nucleic acids [22]. A 
similar proposal was presented more than a decade earlier 
by Gibbons and Hunter [23] and Griffith and Levine [24], 
who used irradiation to demonstrate that the scrapie agent 
was devoid of disease-specific nucleic acid. The alterna-
tive virion hypothesis is not a conventional viral hypothe-
sis but rather addresses the diversity of biological proper-
ties of TSEs. This hypothesis states that TSEs are caused 
by a replicable, informational molecule (likely to be a 
nucleic acid) bound to PrP. Many TSEs, including scrapie 
and BSE, show strains with specific and distinct biologi-
cal properties; this feature, according to supporters of the 
virion hypothesis, is not explained by prions. 
 
No mechanism has yet been proposed that can satisfacto-
rily explain how the PrP protein alone could specify and 
retain multifactorial TSE strain characteristics. On the 
other hand, the virino hypothesis [25, 26] proposes the 
existence of a small, host-independent, informational 
molecule encoding strain-specific information that is 
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bound to and protected by a host protein, PrP. This fulfills 
the requirements of all biological experimental evidence 
obtained and is compatible with the biophysical and bio-
chemical data [27].The molecular structure of the agent is 
still undetermined, but there is now enough evidence to 
formulate testable hypotheses. For example, de novo pro-
duction of infectivity [28] in a test tube by experimental 
manipulation of recombinant or synthetic PrP has been 
clearly demonstrated. The absence of molecular structural 
data does not invalidate the prion hypothesis but simply 
underscores the difficulty of extra-cellularly reconstitut-
ing this remarkable molecular transformation. However, 
additional studies are required to substantiate these claims 
or explain the strain diversity of prions that can lead to 
variable phenotypic disease expression. 
 
Prion Protein (PrPc- PrPsc) 
The prion protein is arguably one of the most extensively 
studied proteins. Prions are infectious pathogens that dif-
fer from bacteria, viruses and viriods in their structure and 
pathogenesis [29]. They contain information encoded in 
the shape of the prion protein molecule; this information 
is transmissible from one molecule to another. Studies of 
the scrapie agent, and more limited studies on prions in 
humans, indicate that these agents are resistant to treat-
ments that inactivate nucleic acids and viruses (alcohol, 
formalin, ionizing radiation, proteases and nucleases) [30], 
but they are inactivated by treatments that disrupt proteins 
(autoclaving, phenol, detergents, and extremes of pH) 
[23]. From a broader view, prions are elements that im-
part and propagate variability through multiple conforma-
tions of a normal cellular protein.  The cellular prion 
protein (PrPc) is a cell membrane bound glycoprotein with 
a molecular weight of 33-35 kDa present in various or-
gans, it is especially abundant in the central nervous sys-

tem (CNS). Little is known about the physiology of PrPc. 
The conformational counterpart of PrPc, PrPsc, is thought 
to be the cause of prion diseases, hence, by definition, 
standing for neurotoxicity and prion infectivity. This as-
sumption has been challenged by several observations 
during the last decade. The disease-associated isoform of 
PrPsc is post-translationally derived from PrPc [31, 32]. 
PrPc is converted into PrPsc through a process in which a 
portion of its α-helical and coiled structure is refolded into 
a β-sheet [33]. PrPc is linked to the cell membrane by a 
glycosylphosphatidylinositol (GPI) anchor. It has either 
one or two sugar chains that are closely linked to the C-
terminus; it also exists in an unglycosylated form (Fig. 2).  
 
PrPc and PrPsc differ in their biochemical properties, with 
PrPsc being protease-resistant and detergent-insoluble 
(Table 1). Despite intensive investigation, no differences 
between the primary sequences or covalent modifications 
of these two isoforms have been found [34]. Rather, they 
are thought to differ in their three-dimensional conforma-
tion, with PrPsc having much higher β-sheet content than 
PrPc [35]. Circular dichroism spectrometry and infrared 
studies suggest that PrPc is composed of 42% α-helical 
and 3% β-sheet conformations, whereas PrPsc is com-
posed of 30% α-helical and 43% β-sheet conformations 
[32]. The increased β-sheet content in PrPsc is due to the 
major conformational transition of the hydrophobic re-
gion (amino acid residues 90-140) and a portion of the 
helices in PrPc molecules. This molecular event makes the 
molecule hydrophobic and resistant to proteinase K (PK) 
digestion. The conformationally altered region in PrPsc is 
thought to form the repeated stretches of short β-sheets, 
and it can aggregate into multimers of PrPsc, which can 
become PrP amyloid fibrils [36]. A tertiary structure of 
PrPc, based on nuclear magnetic resonance spectroscopic 

 
Table 1.  Comparison of PrPP

c and PrPsc

 
 

Properties 
 

PrPc
 

PrPsc 

 
Isoform   Normal   Pathogenic 
Protease resistance No Stable core containing residue  

90-231   
Location in or on cells Plasma membrane Cytoplasmic vesicles    
Solubility Soluble Insoluble 
PK-sensitivity Sensitive   Partially resistant 
Structure Extended Globular 
α-Helices 45% 30% 
β-Sheets 3% 45%                 
Glycoforms Mixture of un-, mono and di-

glycosylated forms 
Mixture of un-, mono and di-
glycosylated forms 

Infectivity No   Yes 
Turnover Hours Days 
Sedimentation properties        Consistent with monomeric 

species      
Multimeric aggregated species   

*PrP denotes prion protein and PrPsc the scrapie isoform of PrPc 
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Figure 2: Secondary structure and other features of the prion protein. The N-terminal contain an octapeptide repeat 
region (OR) (green box). The C-terminal domain contains three α-helixes and two β-strands, one disulphide linkage(-S-
S-) between cysteine residues 179 and 214, and sites for N-linked glycosylation (brown fork) at residues 181 and 197. A 
glycosylphosphatidylinositol (GPI) anchor that tethers the prion to the membrane surface is located at the C-terminal. 
The resistant core of PrPsc is also shown.[CHOs-Carbohydrates] 
 
analyses of recombinant PrP produced in bacteria, in-
cluded a long, flexible N-terminal tail (residues 23 to 121), 
three α-helices, and two small antiparallel β-sheet strands 
that flanked the first α-helix [37, 38]. Molecular modeling 
studies predicted that PrPc is a four helix bundle protein 
containing four regions of secondary structure denoted by 
H1, H2, H3 and H4. The secondary structure is dominated 
by α-helices. Helices 2 and 3 are joined by a disulfide 
bond which maintains the original conformation. Al-
though a tertiary structure of PrPsc has not yet been identi-
fied, current evidence suggests that generation of this iso-
form involves primary changes in the N-terminal half of 
the protein, including folding of a portion of the N-
terminal tail from residues 90 to 121 (and possibly part of 
the first α-helix) into a β-sheet. A key challenge in the 
field is now to obtain a complete structure of PrPsc by 
spectroscopic and crystallographic techniques that would 
allow atomic level specifications of the PrPc conformation. 
 
Expression and physiological function of Prion 
PrPc is a glycoprotein that is normally attached to the sur-
face of neurons, especially to synaptic membranes, and 
glial cells of the brain and spinal cord in all mammals via 
a GPI anchor [39]. The expression pattern of PrPc is di-
verse and developmentally regulated in skeletal muscle, 
kidney, heart, secondary lymphoid organs and the CNS, 
suggesting a wide-ranging and conserved function of the 
protein [40, 41, 42, 43, 44]. Its expression in most tissues, 
together with its evolutionarily conserved amino acid se-
quence, supports a fundamental role for PrPc. As PrPc is 
most abundantly expressed in the brain, the loss of this 
protein is expected to result in substantial neurobehavioral 
modifications even though the specific role of PrPc in 
neural function and behaviour is still elusive [45]. The 
normal physiological role of PrPc remains enigmatic, al-

though a number of roles have been proposed due to its 
remarkable conservation across species. However, studies 
of PrP-null mice have shown that it is not essential for 
viability, and various investigators have suggested that it 
may have a function in sleep regulation [46], cell adhe-
sion [47], or Purkinje cell viability [48]. In vitro studies 
showing that PrP-/- neurons are extremely vulnerable to 
oxidative stress, and that PrPc has superoxide dismutase-1 
(SOD-1)-like activity [49], have lead to the proposal that 
PrPc might have a role in cellular oxidative responses. It 
has been suggested that ablation of this antioxidant func-
tion of PrPc might be associated with neurodegeneration 
in prion disease. There is evidence that the protein binds 
copper [50, 51] and may play roles in the trafficking of 
copper ions [52, 53] or protection from oxidative damage 
in the nervous system [54]. On the other hand, compelling 
evidence now suggests that PrPc has neuroprotective 
properties. It is upregulated upon ischemic brain damage 
[55], and in PrP-deficient mice the infarct size is drasti-
cally increased [56]. In addition, PrPc is able to protect 
against several pro-apoptotic stimuli [57], as well as long-
term renewal in hematopoietic stem cells [58]. Besides its 
various functions, the amino acid sequences of human, 
bovine, sheep, deer, elk, rabbit and mouse prion proteins 
and found a great deal of similarity among them (Fig. 3). 
This homology across all mammalian prion protein se-
quences could facilitate the transmission of TSEs between 
species.  
 
Prion Replication 
The mechanism by which prion infectivity increases is 
still unknown, since the infectious agents do not contain 
nucleic acids. Information appears to be stored in the 
structure of the protein aggregates. Prion aggregates can 
grow by incorporating new prion protein and inducing a 
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refolding into the pathological prion form. Growth of pri-
on aggregates, however, is not enough for replication.  

 

 
 
Figure 3: Amino acid alignment of PrP from seven species. Protein accession numbers in the NCBI database 
(http://www.ncbi.nlm.nih.gov/) are X55882 (Bovine), NM-001009481 (sheep), AAT77255 (European elk), AY639093 
(Reindeer), P04156 (Human), NP- 035300 (Mouse), AAC48697 (Rabbit). Amino acid numbering is according to boPrP 
(6OR).The alignment was done using ClustalW and the figure was generated in BioEdit (v.7.0.5). 
 
At some point, one prion must become two prions. The in 
vivo kinetics of elongation and breakage are exponential 
over time [59] and quite different from the in vitro kinet-
ics of nucleation and growth (Fig. 4). Nucleation is a very 
rare process and can generally be ignored in vivo, since 
disease usually follows introduction of the infectious 
agent. Even if the disease arises spontaneously, interven-
tion will always be too late to interfere with nucleation. 
Instead, we have focused on the exponential rate of 
growth. Since the process appears to be exponential, the 
post-translational conversion of PrPc, or a precursor of 
PrPsc, may be obligatory [31]. A PrPsc molecule might 
combine with a PrPc molecule to produce a heterodimer 
that is subsequently transformed into other PrPsc mole-

cules. In the next cycle, two PrPsc molecules combine 
with two PrPc molecules, giving rise to four PrPsc mole-
cules, which then combine with four more PrPc molecules, 
creating an exponential process. Regarding the thermody-
namic and kinetic analysis of prion replication and the 
replication cycle for the inherited, sporadic, and infectious 
scenarios, several inferences can be made about the bio-
physical properties of the normal cellular and disease-
causing PrP isoforms. 
 
PrPsc replication requires the presence of the gene in the 
host cell to direct PrPc synthesis. Although PrPsc replica-
tion requires a PrP gene in the host cell, this gene does not 
need to be carried by the infectious pathogen. Therefore, 

http://www.ncbi.nlm.nih.gov/
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PrPsc must be more stable than PrPc, and a plausible origin 
for this distinction may be the extensive network of in-
tramolecular interactions between PrP monomers in the 

PrPsc multimer. Protease resistance could be a corollary of 
this increased stability and not necessarily the cause of the 
increased metabolic stability of PrPsc [21]. 

PrPsc

elongation 
conformational 
change

Breakage Breakage into multiple
 new seeds

PrPc

Infection

Prion
Replication
Cycle

Nucleation

 
Figure 4. Prion Replication Cycle. Elongation and breakage are exponential overtime. 

 
Pathogenesis of prion disease 
The pathogenesis of prion disease is also poorly under-
stood. In peripheral infection, prions silently accumulate 
and replicate in peripheral organs or reservoirs and transit 
through at least one PrP-positive (PrP+) tissue before 
reaching the CNS. Prions indeed replicate in lymphoid 
organs during the early stages of infection [60]. Within 
the lymphoreticular system, follicular dendritic cells 
(FDCs) are a prominent site of PrPsc deposition [61], both 
in wild-type and nude mice (defective in T-cell responses).  
 
Thus, neuroinvasion typically begins upon ingestion of  
the TSE agent (Fig. 5). The pathogen must first cross the  
intestinal epithelium in a process that still remains elusive      

deliver the TSE agent to follicular dendritic cells located 
in the germinal centers of B cell-rich follicles present in 
Peyer’s patches and other gut-associated lymphoid tissue 
(GALT) underlying the intestinal epithelium. After incu-
bation in lymphoid tissue such as the GALT and spleen, 

 
 

 
amid some data suggesting a mechanism involving tran-
scytosis by microfold (M) cells [62]. Migratory dendritic  
cells are also known to directly capture antigens within 
the intestinal lumen and could also be responsible for ini-
tial uptake of the TSE agent. Once past the epithelial wall, 
PrPsc appears to be phagocytosed by antigen-displaying 
cells such as macrophages and dendritic cells. While mac-
rophages appear to serve a more protective role [62], 
some experimental evidence suggests that dendritic cells  
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Figure 5.  The Route of Prion Neuroinvasion 
After absorption through the intestinal epithelium, prion reach the peyer’s patches, via blood constituents (Plasminogen 
that bind PrPsc). FDCs are infected in the patches and in other lymphoid organs, including the spleen. The prions reach 
the spleen by a B-cell independent route involving complement factors. Other factors that are required for spreading 
infection to the CNS are lymphotoxin (stimulus for FDCs), and at least one interposed PrP+ tissue. 
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Table 2.  Prion protein interaction with other protein 
 

Proteins Functions Possible binding sites     Identification methods  Reference 
 

GFAP Cell repair               Cytosol    Ligand blot            [91] 
GAG Biomolecular transport     Cell surface              In vitro affinity binding   [102] 
Synapsin 1b    Regulation of neurotrans-

mitter       
Synaptic vesicle          Yeast two-hybrid system  [97] 

Grb2 Adapter protein           Cytosol   Double hybrid in yeast 
and co-
immunoprecipitation 

[97] 

Pint 1           Unknown     Unknown   Double hybrid in yeast 
and co- immunoprecipi-
tation 

[97] 

Caveolin -1     Aggregation PrP-cav 1 
includes signaling cas-
cades 

Plasma membrane         In vitro interaction       [105] 

Bcl-2     Apoptosis Membrane of endoplasmic  
reticulum and mitochon-
dria 

Yeast two-hybrid system  [94] 
 

STI1 Signal transduction, Acti-
vation, neuritogenesis and  
neuroprotection 

Cell surface              In vivo, antibodies       [103] 

Laminin Neuronal plasticity        Cell surface              In vitro binding assay    [101] 
Hsp60 Chaperone Mitochondrial matrix, Cy-

tosol              
Yeast two-hybrid system [95] 

 
APLP1 Regulation of neurite out-

growth      
Cell surface              
 

Expression cloning using 
lambda phage           

[93] 

NCAM Adhesion   Caveolae-like domain,     
Plasma membrane         

Chemical cross linking   
and LC-MS            

[100] 
 

Laminin Re-
ceptor   

Laminin binding          Cell surface              Double hybrid in yeast   
Cell binding 

[96] 

Pli45, Pli110    Unknown Unknown Ligand blot            [91] 
Fyn Signal transduction via PrP  

receptor           
Cytoplasm Cross-linking with anti-

bodies            
[105] 

Plasminogen Specific binding of PrP c    Extracellular matrix, lipid 
raft                     

Binding, co-precipitation  [106] 

GFAP (glial fibrillary acidic protein), STI1 (stress-inducible protein 1), GAG (glycosaminoglycans), APLP1 (amyloid 
precursor-like protein), NCAM (neural cell adhesion molecule), Bcl-2 (B-cell lymphoma-2), Hsp60 (Heat shock protein 
60), Pint 1(PrP interactor 1, uncharacterized), Grb2 (Growth factor receptor-bound protein 2) 
 
the TSE agent spreads to the central nervous system 
(CNS) via the enteric nervous system. A new study finds 
that tunneling nanotubes are important for the intracellu-
lar transfer of prion during neuroinvasion [63]. Prions 
gain access into and between neurons by hijacking tunnel-
ing nanotubes. Whereas previous studies have shown that 
prions can spread by other mechanisms, these are far less 
efficient. For example, transportation by exosomes re-
quires 5 days of co-culture, compared with 12 hours by 
nanotubes [64]. 
 
Although this is the most likely route for neuroinvasion, it 
has been suggested that blood may also play a role in the 
pathogenesis of prion diseases [65]. For example, a num-
ber of studies in animals have produced prion infections 
from inoculation of buffy coats and other blood compo-

nents [66, 67]. These observations set the stage for a 
model of neuroimmune invasion that comprises two phas-
es. The first phase is characterized by the widespread col-
onization of lymphoreticular organs by a mechanism that 
is dependent on B lymphocytes, follicular dendritic cells 
and additional factors such as complement [68]. The sec-
ond phase requires expression of PrPc in peripheral sym-
pathetic nervous system (SNS) nerves and results in  
prion dissemination in the CNS. Recently, the effective-
ness of standard leukoreduction for removing TSE infec-
tivity from whole blood was investigated [69]. The re-
moval of all white cells reduced infectivity by only 42%, 
suggesting that other blood components, cells or plasma, 
could be infectious. These data, when considered together 
with animal studies of prion infectivity in blood, have 
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highlighted both the significance of PrPc and the role of 
individual blood components in the pathogenesis of TSEs. 
 
Etiology of prion diseases 
Despite a lack of mechanistic knowledge, prion diseases 
are emerging as one of the best understood neurodegen-
erative disorders with respect to etiology and pathogene-
sis. The etiologic agent of TSEs was hypothesized to be a 
“slow virus” by Sigurdsson [70], in an effort to explain 
the transmissible nature and prolonged incubation period 
observed during experimental transmission studies [71]. 
The “slow virus” was indeed unconventional because it 
provoked no immune response in the host and was resis-
tant to formalin, UV light and ionizing radiation treat-
ments that normally destroy viruses [72]. Stanley Prusiner 
pursued this finding and eventually showed that a single 
protein, dubbed the prion protein, was consistently pre-
sent in the infectious fraction and that surprisingly, this 
protein was encoded by a normal chromosomal gene of 
the host [73]. Sequencing of the prion protein gene 
(PRNP) was pivotal to understanding prion disease be-
cause it showed that mutations in this gene could give rise 
to CJD, as well as to two other conditions (GSS and FFI) 
not previously considered to be prion diseases. Subse-
quent studies by Prusiner et al. [74] demonstrated that a 
hydrophobic protein was an essential component of the 
scrapie agent, but no specific polypeptide was identified. 
To underscore the requirement of a protein for scrapie 
infectivity, Prusiner [21] introduced the term “prion” in 
1982 to describe the proteinaceous infectious particle. In 
the same year, Prusiner et al. [75] and Bolton et al. [73] 
reported the purification of scrapie prion and demon-
strated its relatively high resistance to PK treatment. Soon 
after the discovery of prions, a similarity with a normal 
cellular protein that is a structural component of cell 
membranes was identified. The neurotoxic form of PrP 
could represent distinct proteinaceous species, which is 
intermediate or byproduct of PrPc→PrPsc conversion 
pathway. The current understanding suggests a number of 
possible mechanisms to cell death in TSE diseases, in-
cluding an increased level of NMDA receptor mediated 
excitation [76] and activation of Erk1/2 pathway [77].The 
generation of TSEs by prions in different species, or in 
some instances different disease phenotypes in the same 
species, suggested the existence of different prion 
“strains” [78]. Although neither the viral nor the protein-
only theory has been proven, evidence in favor of the pro-
tein-only hypothesis has overwhelmed the virus camp. 
Hence for better understanding of identity and structural 
characteristics of the neurotoxic form of PrP, more rigor-
ous efforts are mandatory.  
 
The Species Barrier 
Passage of transmissible spongiform encephalopathies 
between species is often a stochastic process and may be 
limited by a species barrier. This barrier represents the 
decreased efficiency with which TSEs are passed from 

one animal to another animal of a different species, as 
compared to the efficiency of transmission among ani-
mals of the same species. In spite of centuries of expo-
sure, sheep scrapie is not known to have been transmitted 
to humans, but bovine spongiform encephalopathy (BSE) 
has (fortunately only rarely) done so. The primary deter-
minants of the species barrier are the sequences of the 
potential prion proteins of the two species. The transmis-
sion of prions from one species to another requires pro-
longed incubation times, compared to intra-species trans-
mission; in some instances, the species barrier seems to 
confer complete resistance to transmission. Although 
transmission of a TSE from one species to another might 
be less efficient than transmission within the same species, 
once it occurs the TSE may become adapted to the new 
host. Following adaptation, it can be transmitted more 
efficiently among members of the new species, and the 
incubation period becomes shorter and less variable. For 
example, when scrapie is transmitted experimentally from 
one species to another, the incubation period is usually 
longer during the first passage than for subsequent pas-
sages within the new species [79]. This is an important 
topic that is relevant to the debate over the possible 
transmission of BSE to man. 
 
Species barriers in TSE diseases have been studied ex-
perimentally in several laboratory species including mice, 
rat, hamsters and non-human primates. From studies with 
transgenic mice, three factors have been identified that 
contribute to the species barrier: 1) the difference in PrP 
sequences between the prion donor and recipient, 2) the 
strain of prion, and 3) the species specificity of protein X, 
a factor that facilitates PrPsc formation by binding to PrPc. 
This factor is probably a protein, hence the provisional 
designation protein X [80, 81]. Even a single amino acid 
change in the PrP of the recipient can bring about a radi-
cal change in incubation times [82] or even result in resis-
tance to disease. Since these classic studies were per-
formed, several transgenic experiments have confirmed 
the intimate relationship between the sequence of the pri-
on protein and specificity of transmission [83, 84]. None-
theless, other studies established that in some contexts, it 
may not be the sole determinant. 
 
Prion strains 
One of the most puzzling phenomena in prion biology is 
the existence of prion “strains”. The prion “strain” con-
cept originates from the multiple but distinct transmissible 
prion diseases that can be passed in the same inbred 
mouse lines despite their identical PrP-encoding genes. A 
remarkable feature of prion biology is the strain phe-
nomenon, where prion particles apparently composed of 
the same protein lead to phenotypically distinct transmis-
sible states. These strains have distinct neuropathologies, 
and differential rates of disease progression have provided 
evidence of discrete subtypes of TSEs [85]. The existence 
of prion strain was first discovered during the transmis-
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sion of scrapie among goats [86]. Different prion strains 
are characterized by length of incubation period of disease, 
the distribution of CNS vacuolation that they produced, 
and whether or not prion deposits formed. Different 
strains frequently associated with PrPsc species show dis-
tinct physical features such as susceptibility to PK diges-
tion, stability toward denaturing agents, proportions of di-, 
mono-, and unglycosylated forms and differential electro-
phoretic mobility following PK treatment; this reflects 
diversity at the amino-terminus that results in multiple 
cleavage sites. These observations taken together begin to 
build an argument for PrPsc as the information molecule 
in which prion strain-specific information is encrypted. 
Deciphering the mechanisms by which PrPsc carries in-
formation for prion diversity and passes it on to the nas-
cent prions is a challenge. Whether PrPsc can adopt multi-
ple conformations, each with a distinct incubation time 
and pattern of PrPsc deposition, remains to be determined 
[87]. The existence of different prion strains casts a shad-
ow on the protein-only hypothesis. The prion strains and 
species barriers in prion transmissibility appear to be in-
tricately related, representing two sides of the same coin. 
While cross-species transmission often results in faithful 
propagation of the inoculating strain, in some cases it can 
result in strain switching, as observed in animal studies 
[88], yeast prion systems [16], and other in vitro experi-
ments [89]. The exact mechanism by which strain switch-
ing occurs is still not clear. The existence of the strain 
phenomenon is not only a scientific challenge, but it also 
represents a serious risk for public health. The dynamic 
nature and inter-relations between strains and the poten-
tial for the generation of many new prion strains depend-
ing on the polymorphisms and the crossing of species 
barrier is the perfect recipe for the emergence of ex-
tremely dangerous new infectious agents [90]. 
 
Interaction of PrPc with other proteins 
PrPc interacts with a large number of proteins. In order to 
investigate the transformation of PrPc into PrPsc, possible 
interactions with other protein candidates were identified 
(Table 2). The first interacting proteins identified were a 
pair of prion protein ligands, Pli45 and Pli110 [91]; the 
former is a glial fibrillary acidic protein (GFAP), a marker 
for astrocytes that proliferate in response to TSE infec-
tions [92]. Later on, other prion protein ligands, including 
Pli3, Pli4, Pli5, Pli6, Pli7 and Pli8, were identified using 
the PrP-alkaline phosphatase screening method [93]. Sub-
sequently, a number of PrPP

c-interacting proteins have 
been identified using a yeast two-hybrid system: these 
include the anti-apoptotic protein Bcl-2 [94], the cellular 
chaperone heat shock protein 60 (Hsp60) [95], the 37 
KDa laminin receptor precursor [96], the synaptic vesicle 
marker synapsin1b, the adaptor protein Grb2 and the pri-
on interaction protein, for which no function has been 
determined [97]. In addition to Hsp60, other chaperones 
such as Hsp73 and GroEL can interfere with α to β con-
version of prion, while chaperones such as Hsp70 have no 

role in the PrP conversion [98]. PrPc also binds to laminin 
in PC12 cells and rodent primary neurons, and this inter-
action promotes neurite outgrowth in these cells [99]. A 
number of additional cell surface proteins interact with 
PrPc including neuronal cell adhesion molecules (N-
CAMs) [100], apolipoprotein 1 (an amyloid precursor 
protein that has been implicated in Alzheimer’s disease), 
the 67 KDa laminin receptor [101] and Glycosaminogly-
cans (GAGS) [102].  The complementary hydropathy, a 
technique in which cDNA is used to generate a comple-
mentary mirror image of the target protein, identified that 
the 66 KDa stress inducible protein STI-1 binds to PrPc 
and might be involved in neuroprotection [103]. 
 
 
The list of putative PrPc binding partners is equally long; 
some of these cellular cofactors have been suggested to 
contribute not only to normal PrPc function but also to the 
conformational conversion process [104]. 
 
Relationship to other diseases 
Researchers of prion diseases believe that PrP may play 
important roles in other brain disorders. Ongoing studies 
may also help determine whether prions consisting of 
other proteins may play a part in more common neurode-
generative conditions, including Alzheimer's disease, 
Parkinson's disease and amyotrophic lateral sclerosis 
(ALS). Clinical studies also showed a striking similarity 
between TSE and common age-related conditions such as 
Alzheimer’s or Parkinson’s disease, both of which show 
symptoms of progressive dementia and loss of motor con-
trol, respectively. Both of these diseases are spontaneous, 
but they can sometimes be inherited. With regard to CJD 
and Alzheimer’s disease, DeArmond et al. [107] stated 
that “although there are obvious differences in the etiol-
ogy and pathogenesis of both sets of disorders, a remark-
able number of similarities exist.” In both cases, patho-
genesis involves an abnormal form of a neuronal mem-
brane protein. One feature that distinguishes the TSE dis-
eases from other neurodegenerative diseases is the glyco-
phosphatidylinositol membrane anchor on prion protein, 
the molecule that is corrupted in TSE diseases. The pres-
ence of this anchor profoundly affects TSE pathogenesis, 
which involves major membrane distortions in the brain, 
and may be a key reason for the greater neurovirulence of 
TSE prions relative to many other autocatalytic protein 
aggregates [108]. The abnormal build-up of amyloid-β 
(Aβ) peptides in the brain is regarded as the causes of 
Alzheimer’s disease. Lauren et al. [109] show that the 
prion protein might mediate the pathogenic effects of Aβ 
oligomers. Their groups find that, within PrPc, aminoacid 
residues 95–110 are crucial for Aβ binding. Interestingly, 
the enzyme α-secretase - which precludes Aβ production 
by cleaving the Aβ precursor protein APP within the Aβ 
domain - also cleaves PrPc between residues 111 and 112 
[110], thus releasing from the membrane the portion of 
PrPc to which Aβ would otherwise bind. For instance, 
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does PrPc mediate the effects of Aβ dimers isolated from 
brains of people with Alzheimer’s disease [111, 112], or 
of the Aβ*56 oligomer, which causes memory deficits in 
mouse models of this disease [113, 114]? Not withstand-
ing these unresolved questions, the discovery that PrPc 
may be a mediator in the development of Alzheimer’s 
disease is fascinating, not least from a therapeutic per-
spective. There are still many researches are on the way to 
elucidate the relationship of prion protein with other neu-
rodegenerative disorders. 
 
Therapeutic approach to prion disease 
Prion diseases are always fatal, often not until months 
after the outbreak of the disease. According to studies 
conducted on mice suffering with scrapie, PrPc seems to 
have a protective effect in certain conditions such as 
stroke. Interestingly, mice that do not produce PrPP

c appear 
to be completely healthy. This property provided a start-

ing point for a new therapeutic approach that has recently 
become a focal point: can the production of healthy PrPc 
be switched off in infected animals, thereby depriving the 
diseased PrPsc of its ability to spread? In this way, the 
chain reaction would be interrupted. Insights into prion 
research and techniques might also prove to be useful in 
later-stage treatment regimes for other diseases. Newly 
designed proteins might be able to convert viral or bacte-
rial proteins into a disabled state. The unique biological 
features of the prion protein have encouraged investiga-
tion of new prophylactic strategies and therapeutics with 
multiple compounds aimed at a single target, i.e., PrP 
(Table 3) [115, 116, 117,  118, 119, 120, 121,  122] 
Over the past three decades, number of drugs has been 
isolated as active against mammalian prion [123]. These 
include polysulfate anions, dextrans, heparins, oligonu-
cleotides, cyclic tetrapyrroles, anthrocyclines, porphyrins 
and diazo dyes.  

 
Table 3.  Targets and potential therapeutic compounds for prion diseases 
 
Compounds Examples Advantage and Disadvantage       Reference 

 
Anionic dyes     (amy-
loid stain)               

Congo red               •Modest prophylactic activity against 
scrapie in rodents. 
•Potential toxicity 
 

[128] 
 

Sulphated glycans        Pentosan polysulphate    
Dextran sulphate 500      

•Effective in protecting rodents 
against scrapie infection by inhibiting 
conversion of PrPc to PrPsc.          
•Unproven efficacy 

[115] 
 

Polyene antibiotics        Ampotericin B            
MS-8209 & Filipin        

•Inhibit membrane PrPsc formation.    
•Toxic                           

[122] 
 

Statins Lovastatin and            
Squalestain 

•In vitro activity showing inhibition 
of PrPc to PrPsc conversion.          
 

[121] 

Quinacrine, quino-
line ,acridines,  
phenathiazines    
and related molecules     

Quinacrine, quinine,       
biquinoline, and          
chlorpromazine 

•In vitro activity by binding with PrPc  
and blocking conversion into PrPsc.    
•Epatotoxic 

[118] 
 

Cyclic tetrapyrroles       Porphyrins and           
  phthalocyanines 

•PrPP

sc inhibitor by directly block  
 Cell-free PrP conversion reaction. 

[129] 
 

Growth factors           Basic fibroblast           
growth factor             

•Raise the possibility of using neuro-
tropin therapy to intervene at a rela-
tively late stage to delay neurodegen-
eration and the development of clini-
cal disease in TSEs.                
 

[116] 
 

 
However, none of these has proven to be an effective 
therapy for sick animals or patients, although there was 
some success using quinacrine and chlorpromazine in 
vitro. For most of these compounds, the mode of action 
and targets remain largely unknown. Mostly, two main 
modes of action for antiprion drugs can be imagined: ei-
ther in cis, or in trans. Some compounds are thought to 
bind directly to PrPc or PrPsc like Congo Red (CR), Pento-

san Polysulfate (PPS) or Glycosaminoglycans (GAGs) 
have cis action. Other compounds are thought to act in 
trans by affecting PrPc or PrPsc indirectly. Among these 
molecules are various lysosomotropic factors including 
the antimalarial drugs Quinacrine (QC) and Chloroquine. 
Indeed, the lysosome is a potential site of conversion of 
PrPc to PrPsc [124]. In addition, a recent report [28], pro-
poses that QC’s antiprion activity is related to its ability 
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to redistribute cholesterol from the plasma membrane to 
intracellular compartments, thereby destabilizing mem-
brane domains. Other compounds like Curcumin and Di-
methyl sulphoxide (DMSO) have been used for the thera-
peutic purposes. Curcumin is an efficient inhibitor of 
PrPsc propagation in RML-infected N2a cells (IC50 10 
nM), and causes a decrease in detectable protease-
resistant PrP in cell free conversion studies (40% decrease 
with 10 nM curcumin), but it has no effect on disease 
progression after i.c. prion infection in hamsters regard-
less of the treatment regime [125]. DMSO treatment de-
creases the amount of detectable PrPsc in ScN2a culture 
[126] and reduces the infectivity titre of scrapie-infected 
brain material [127] in prion propagation systems. It is 
uncertain whether these findings can be extrapolated to 
the clinical realm. Furthermore, results suggested that 
such drugs could adversely impact the health of the pa-
tients. 
 
Most described therapeutic strategies target the infectious 
prion particles; some researchers are seeking methods of 
repairing the disease-related structural damage to the 
brain. Others have reported that stem or fetal cell trans-
plants can colonize damaged areas and restore some of 
the lost tissue in experimental animals. Intercepting dis-
ease progression in advance of debilitation and irreversi-
ble brain damage, however, could increase treatment op-
tions. Many researchers have emphasized the dire need 
for diagnostic tools that would permit widespread screen-
ing for carriers of the infectious agent. Such tools could 
indicate potential candidates for early treatment with ther-
apeutic compounds that might prevent continued infection.  
 
Closing remarks 
Our understanding of prion diseases has advanced dra-
matically over the past half-century. It is now clear that 
these diseases, once thought to be medical and veterinary 
curiosities, exemplify novel principles of protein structure 
and transfer of biological information. Some of these 
principles may have applicability to other neurodegenera-
tive disorders such as Alzheimer’s, Parkinson’s, and Am-
yotrophic lateral sclerosis (ALS) diseases, which all in-
volve accumulation of conformationally altered proteins. 
In addition to their intrinsic scientific and medical signifi-
cance, prion diseases have also assumed increasing public 
health importance. The emergence of BSE and variant 
CJD emphasizes the need for designing more sensitive 
procedures for detecting prions in food, blood products 
and donor organs. Although prion diseases currently af-
fect a relatively small number of individuals, it is wise to 
take steps to prevent potential increases in their incidence. 
The knowledge gained from the study of prion diseases 
may provide effective strategies geared toward defining 
disease etiology and dissecting molecular pathogenesis of 
more common neurodegenerative disorders such as Alz-
heimer’s disease, Parkinson’s disease and ALS. Since the 
risk from inherited disease is present decades before neu-

rologic dysfunction is evident, development of effective 
therapies is imperative. 
 
A critical issue is whether the phenomenon of propaga-
tion of biological information through transmission of 
protein conformation is exclusively associated with a 
small group of proteins, like PrP, or a more general proc-
ess in biology. The discovery of proteins with prion-like 
behavior in yeast and fungi has provided some insight 
[130, 131]. Understanding prion multiplication and dis-
ease processes will certainly open up new vistas in bio-
chemistry and genetics. As PDs are incurable and fatal, a 
continuous vigilance is needed to pre-empt outbreaks of 
prion-induced diseases. 
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