Quality control of vaccines-A journey from classical approach to 3Rs.

Suresh Kumar¹*, Mahendra Pal Singh¹, Vijay K. Bharti², Ramendra Pati Pandey³

¹National Institute of Biologicals, Ministry of Health & Family Welfare, Noida, Uttar Pradesh, India
²Defence Institute of High Altitude Research (DIHAR), DRDO, Ministry of Defence, Leh-Ladakh, Jammu & Kashmir, India
³Department of Medicine, University of Sao Paulo, State of Sao Paulo, Brazil

Abstract

Most vaccines for human and veterinary use are complex biological preparations having one or more antigens along with an adjuvant product to improve the immune response against the specific disease. Conventional vaccines have used numerous animals for production and quality compliance before the release of the final product. Animal based potency tests were required to help in ensuring that each batch of vaccine is consistently safe, pure, potent and effective by providing a level of protection as determined in the original efficacy studies. As a result, the levels of pain and suffering in animals were compromised as compared to other purposes of animal experimentation. Therefore, there is a need to identify viable options to replace these methods of vaccine production and quality check without affecting their quality, potency, and efficacy. This review article will highlight the progress and breakthroughs about the achievements of 3Rs (replace, reduce, and refine) principles especially in the development of alternative test models including physio-biochemical, immunochemical and in-vitro methods using so-called “consistency approach” in the area of human and veterinary vaccinology. This article also provides a critical review on the various methods used for potency assays and the factors affecting the accuracy of these methods.

Keywords: Potency test, Vaccine, 3Rs.

Introduction

Vaccines have been proved a wonderful tool of immunization in modern medicine, which saved more, lives worldwide than any other medical product or procedure in past 50 years. Their importance will further increase in coming days due to more outbreaks of contagious diseases with varied strain and serotypes. According to literature, history of vaccination can be traced back to ancient Greece as far as 429 BC. The Greek Thucydides noticed that people who survived the smallpox plague in Athens did not become re-infected with the disease. Later on, in 900 AD, Chinese were the first to discover and use a primitive form of vaccination called variolation. The aim was to prevented smallpox by exposing healthy people with tissue from the scabs of diseased person. In 1796, a British physician Dr. Edward Jenner discovered vaccination in its modern form to prevented smallpox by exposing healthy people with tissue from the scabs of diseased person. In 1796, a British physician Dr. Edward Jenner discovered vaccination in its modern form and proved to the scientific community that it worked. Subsequently, Royal Jennerian Institute founded in 1803 for the production of the vaccines [1].

Different types of vaccines, classified on the basis of the antigen used in their preparation have been shown in the Table 1 below:

Table 1. Examples of vaccines by types.

<table>
<thead>
<tr>
<th>S No</th>
<th>Type of vaccine</th>
<th>Method of Production</th>
<th>Examples of Vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inactivated (Killed antigens)</td>
<td>Vaccines containing killed microorganisms</td>
<td>Hepatitis A, flu, cholera, plague, Whole-cell pertussis (wP), Inactivated polio virus (IPV)</td>
</tr>
<tr>
<td>2</td>
<td>Live Attenuated Vaccines (LAV)</td>
<td>Vaccine contains live organisms that have been weakened to disable their virulent properties</td>
<td>Oral polio vaccine (OPV), Measles, Rotavirus, Yellow fever, rubella, measles, mumps, typhoid, tuberculosis, Bacillus Calmette Guerin or BCG</td>
</tr>
<tr>
<td>3</td>
<td>Toxoids (Inactivated toxins)</td>
<td>Vaccines containing inactivated toxic compounds secreted by the organisms</td>
<td>Diphtheria toxoid, Tetanus toxoid (TT)</td>
</tr>
<tr>
<td>4</td>
<td>Subunit vaccines (Purified antigens)</td>
<td>These contain part of the virus is responsible for creating disease</td>
<td>Hepatitis B (Hep B), Human papillomavirus, Acellular pertussis (aP), Haemophilus influenzae type b (HiB), Pneumococcal (PCV-7, PCV-10, PCV-13).</td>
</tr>
</tbody>
</table>

Potency assay is one of the main methods used for assuring the quality of vaccine which is based on the measurement of one or several parameters that have been shown to be related directly or indirectly with product efficacy (the ability to produce an effective level of protection in the target species) [2]. The quality control tests of vaccines have their roots in the work of 19th century scientists Pasteur, Koch, Behring, and Ehrlich. The multi-dilution test design assay with the use of reference preparation which depended upon ED₅₀ was introduced between 1930s-1950s. Subsequently, the current In-vivo quality control tests for established vaccines have been developed during 1950s-1970s (Kendrick test, NIH, etc.) [3].
The main types of potency tests performed by vaccine manufacturers includes *in-vitro* titration of live organisms, enzyme-linked immunosorbent assays (ELISAs) and *in-vivo* methods involving immunization of small laboratory animals (e.g., mice, rats & guinea pigs) followed by challenge with a toxin/virus/bacteria or titration of immune sera to measure the antibody response. For live, attenuated vaccines, *in-vitro* potency assay is mainly used but it is not commonly used for inactivated vaccines [4]. Since, production of vaccine occurs in batches, there is an obviousness of variation in their characteristics if strict controls are not ensured. Therefore, all the manufacturer and regulatory bodies have duty to formulate quality procedures for potency testing using various *in-vivo or in-vitro* assays.

The use of "alternative" methods are generally concerned with the Principles of the 3Rs,- Replacement, Reduction, and Re-finement-of animal testing, first proposed by the scientists William Russell and Rex Burch in their book 'The Principles of Humane Experimental Technique' (1959). Subsequently, various regulatory bodies encourage the development of alternative methods with appropriate relevance, supporting data and test method validation to reduce, refine and replace the animal use for vaccine potency testing. The present review article will provide a deep insight in the progress and achievements of 3Rs in the development of alternative test methods along with discussions on the relevant factors that might be responsible for slow progress in the introduction of alternatives particularly test validation and harmonization of Guidelines.

Quality Control of Vaccines

Some methods in biomedical research and testing are used in the modern era of science without undergoing any major change from their early development onwards. This is well applied to potency measurement, especially in vaccines. A test for potency is one of the required listed tests (21CFR610.10) which shall consist of either *in-vitro or in-vivo* tests, or both, that have been specifically designed for each product so as to indicate its potency in an adequate manner to satisfy the interpretation of potency given by the definition in 600.3(s). As per 21CFR600.3(s), “potency” is defined as “the specific ability or capacity of the product, as indicated by appropriate laboratory tests or by adequately controlled clinical data obtained through the administration of the product in the manner intended, to affect a given result.” [5].

Vaccines are derived from living organisms which can be easily distinguished from chemical pharmaceuticals due to their complex physical, chemical and molecular compositions [6]. This indicates that their characteristics may vary from batch to batch, therefore, each batch is considered to be unique. Moreover, the inherent variability of living organisms, the potential of contamination coming from starting materials and the environment must require strict control measures to ensure product consistency, safety and efficacy of each batch [6].

As per norms, safety, quality, and efficacy of the products are the prime legal responsibility of the manufacturer in the countries where vaccines are manufactured and marketed. These bodies are responsible for the review of licensing applications, lot release, and monitoring the performance of product. Therefore, details of processes by which the vaccine is produced and tested including the in-process and final product testing are the primary goal of the manufacturer [6]. However, accomplishing this goal depends largely on the quality control tests conducted at various critical steps during the production process and application of Good Manufacturing Practices [7,8].

Previously established concepts and methods of quality control were based on the uniqueness of each individual batch of vaccine. The consistency in the production of vaccine means that each batch of the product is of the same quality and is within the same specifications of the batch which has been shown to be safe and efficacious in human trials or in the target animal species. However, a shift in emphasis away from reliance on final product testing will require the development of a control scheme for each product or product class. Therefore, the development and validation of alternative methods based on the principles of 3Rs for potency testing of vaccines to establish consistency in different batches is crucial and of prime importance before the product moves to international markets [6].

Importance of 3Rs in the Field of Vaccinology

The potency test is mainly used for quality control evaluation of vaccines based on an immunization-challenge procedure in laboratory animals. Many attempts have been made to modify these animal models to improve its relevance and statistical significance. However, the principle of immunization-challenge procedure in laboratory animals is still being used in vaccine research and routine lot-release testing. However, these models have proven to be instrumental in scientifically underpinning the correlation between protection of selected vaccine antigens and their efficacy [9]. The quality control evaluations of vaccines require high frequency of tests with large number of laboratory animals. These potency tests are multi-dose models that include a challenge procedure with virulent micro-organisms [10]. As a result, animal suffer substantial pain and distress during the testing period.

Generally, use of laboratory animal can be scientifically justified if the study benefits for public or veterinary health versus distress to animals and costs of experiment. In spite of that, there is a strong feeling in public circles that how the laboratory animals can be replaced, reduced or refined of their use in biomedical research and testing. Although, for the time being, few of the animal models in vaccine research and development are inevitable and irreplaceable, a significant progress has been made in using *in-vitro* pre-screening tests to evaluate immunological parameters. For a long time, *in-vivo* potency tests have been used for routine vaccine lot-release and most of the pharmacopeia relied on direct or indirect-challenge procedure in laboratory animals [9].

Major limitations of the challenge model are that the procedure is expensive and time consuming. It usually takes 2 months for results to come. Moreover, most of the vaccines have shelf life of about 2 years and after this test the vaccine reaches market with only 22 months of life. Potency tests have been designed
to measure the ability of the vaccine to protect against subsequent challenge with the active component responsible for pathogenicity. Besides, use of virulent microorganisms or toxins in *in-vivo* potency assays poses a potential risk to those working in the laboratory. Furthermore, there is striking evidence that some surrogate models for potency testing poorly predict the efficacy of the vaccine in the target species [11]. Therefore, the routine use of these methods has not resulted in the on time release of effective vaccines. Use of *in-vitro* methods might limit the use of *in-vivo* models for quality evaluation of vaccines. Additionally, the animal models have several limitations in respect of their relevance, reliability, costs and moral acceptability.

The 3Rs approach is driven by the scientific limitations of the animal models used in potency test of vaccines. There are few examples like the rabies vaccine potency assay (or NIH test) which has a poor reproducibility and wide confidence intervals [12]. Moreover, these tests have to be repeated to get the valid results. The safety test in quality control of veterinary vaccines is often criticized for its doubtful relevance [13]. In addition, animal use in viral vaccine production is strongly discouraged for safety reasons as the animal cells might be a source for transmission of pathogens. Finally, all alternative approaches have one thing in common that they have ultimately resulted in refinement, reduction or replacement of animals use. Now, there is an increased interest in the development of alternatives to the current *in-vivo* potency tests. Newer models are mainly based on the use of serology instead of the challenge, use of humane endpoints or *in-vitro* antigen-quantification tests. This new avenue in the quality control of vaccines is called the “consistency approach” which is state-of-the-art in quality control of the new-generation vaccines. In this promising approach, a set of parameters are used to constitute a product profile [9]. These parameters are monitored throughout production and aim to demonstrate that each new batch of vaccine produced is of a similar quality to a vaccine batch of the same provenance, and is of proven efficacy and safety. The consistency in this new approach relies heavily on the implementation of quality systems, such as good manufacturing practice and quality assurance. Further, this strategy involves demonstrating consistency by using a battery of immunochemical, physicochemical and *in-vitro* methods [14].

Assessment of the Potency Assay

The safety and potency assessment are the main tests used during vaccine development. Usually a set of 15-20 assay results have to be made available for making quality control and monitoring chart. Therefore, the availability of fast and reliable methods further benefits the existing vaccines by using *in-vitro* alternatives for *in-vivo* safety tests. For example, the use of a PCR based method to measure a virulent poliovirus in oral polio vaccine preventing neuro virulence testing in monkeys [15]. Another example is a very sensitive *in-vitro* vero cell assay for the detection of residual diphtheria toxin described in the Ph Eur. Monograph [16]. Further, safety of a vaccine is ensured by consistency in production and effective post-marketing surveillance.

The available potency assays can be divided into four different categories: challenge test, toxin neutralizing test, cell-based assays and titration assays. The test of potency for live-attenuated vaccines is generally determined by measurement of the number of viable particles, either by colony counting or by virus titration. The use of quantitative PCR (qPCR) has also appeared to be feasible in some cases instead of performing virus titration [17]. The main advantage of qPCR is that it is faster, accurate and reproducible.

Challenge Test

The challenge test has been used for decades for the quality testing of vaccines, still inferior products arrive in the market. Therefore, the interest in new approaches is increasing especially for lot release testing. In safety point of view, it is easy to manage the risks in cell culture lab as compared to Animal Facility. Although all procedures can be performed in safety cabinets and animals can be housed in containment systems (e.g., isolators or individually ventilated cages) but the injection of virulent material or manipulation of contaminated animals exposes technicians to additional risks. Moreover, animal testing is also laborious, time consuming and expensive.

As mentioned earlier most of the vaccines have a shelf life of less than 2 years and a routine potency test requires around 8 weeks, which is undesirable. Nowadays, due to strict ethical regulations, specific housing conditions such as barrier systems and ventilation equipments, the maintenance cost of animals are rising. In most western countries, majority of scientific community is inclined towards non-animal experimentation, especially for those experiments which inflicts severe pain and suffering [18]. These tests mainly based on large numbers of animals, usually over 100 animals per test and in the majority of cases, the animals will show severe clinical signs. As a result policy makers often emphasize the development of new methods based on 3 Rs. Apart from the economic and ethical reasons, there are also scientific reasons to overlook animal based potency tests. In rabies vaccine and whole-cell pertussis vaccine, the results have poor intra- and inter laboratory reproducibility, resulting in repeat tests by manufacturers [19,20].

In challenge test, determining an immune response in animal model as a correlate for protection against a disease would facilitate the rational development of an effective vaccine. However, finding such a correlate can be difficult. These animal models only assessed the interactions of the organism with the innate, humoral and cellular immune system. However, it is extremely difficult to develop animal models strictly for human pathogens such as Neisseria meningitis, due to the specificity of a range of surface proteins that interact with the host receptors [21]. One of the critical steps required for developing an animal model is identification of molecules that play important role in attachment of pathogens to host cells.

Further, the potency tests are questioned in a term of their clinical efficacy like in case of tetanus vaccine. Moreover, studies have demonstrated a lack of correlations with efficacy
in clinical studies [22]. Additionally, some animal models do not mimic the human situation like whole cell pertussis potency testing. In regulatory requirement animals are challenged by the intra-cerebral route and not by the intranasal route, which is the natural port of entry for Bordetella pertussis. Moreover, the potency testing does not provide any information about the effect of booster immunizations or the time interval for weaning of immunity [23].

Transgenic mice expressing human target receptors such as CD46 or CD66 have been developed by using genetic methods and used for measles virus or Neisseria infections [24,25]. In addition, the ‘humanized immunodeficient mice’, in which human tissue retaining immunological functions is transplanted into mice, can be used. In mice transplanted with human umbilical cord blood CD34+ cells, human immune functions could be reconstructed and studied in the presence of HIV infections [26]. However, the infection induced immune responses (direct challenge procedure) may not always match the protection appeared after vaccination in the laboratory animal model [27].

New version of the in-vivo potency tests

During 1980’s, the animal numbers per vaccine was strictly followed as per monograph of pharmacopeia due to prevailing widespread variation in response of individual animals. In the meantime, many factors especially health status, microbiological status of the animals, skills of the technicians, food quality and overall conditions of the Animal facility have been optimized. As a result, there was a reduction in variation in response of testing animals which further allowed a significant in cutback in number of animals per vaccine dilution which was revealed in many studies [28-30].

Based on the outcome of these studies, the WHO and Ph.Eur. have made a slight modification in traditional classical challenge test. These agencies have revised their guidance by indicating that the number of animals to be used should meet the confidence interval criteria specified. Moreover, a single dose potency approach used for diphtheria and tetanus toxoid vaccine in the monograph of Ph. Eur. in place of multi-dose potency test has been allowed further to reduce the number of animals. If there is consistency in vaccine production, the single dose approach is only an option which indicates that the vaccine under study meets the minimum requirement in IU/ml [31].

Humane endpoint and in-vivo potency test

A humane endpoint is the point at which an experimental animal’s pain and/or distress can be terminated, minimized, or reduced by actions such as killing the animal humanely, terminating a painful procedure, or providing treatment to relieve pain and/or distress (CCAC 1998) [32]. Humane endpoint can be realized by replacing crude general endpoints such as death or severe clinical findings with more specific local end without compromising of the scientific outcome of the test. The 3R methods have been developed for several vaccines that include a nonclinical endpoint, ultimately resulting in the reduction in number of animals and significant decline in pain and distress. An example is the use of serology in potency testing of tetanus and diphtheria toxoid vaccines. Humane endpoint might be considered as the best approach to limit the level and duration for several potency assays in which replacement of animal is not possible [33].

As per regulatory guideline, new batches of vaccines must be tested to ensure that they are safe and can provide protective immunity. In general, the routine testing typically involves immunization of several groups of animals with different dilutions of the vaccines followed by exposure of the animals to the infectious agent of interest. Animals with insufficient protective immunity develop induced infections. Unprotected animals often develop the disease which is frequently lethal. Although regulatory authorities have in the past typically required death as an endpoint for such studies, some authorities now allow the humane killing of moribund animals (USDA19998b) [34].

Now, most of the pharmacopoeias or guidelines on vaccine quality accept the concept of establishing humane endpoints in vaccine potency testing based on the scientific applicability. According to 9 CFR 117.4 (e) (USDA), “test animals that show clinical signs of illness that are due to the test may be treated humanely, destroyed if the illness has progressed to a point when death is certain to occur without therapeutic intervention.” [35,36]. Severe clinical signs or death are the endpoint of potency test in most of the pharmacopeia. The object behind humane endpoints is to reduce the time interval of pain and distress an animal have to suffer by killing the animal in an early stage of disease without compromising the scientific objective of the test.

In May 2012, the USDA Center for Veterinary Biologics (CVB) issued guidance on the use of humane endpoints and methods in animal testing of biological products. CVB Notice No. 12-12 includes specific guidance regarding the use of humane endpoints in biological products testings, including the rabies challenge test. These guidelines emphases on the use of the anaesthesia for intra-cerebral inoculation of mice during rabies vaccine testing and encourages the use of analgesics in animal studies and potency testings when it can be shown that the study outcome is not affected [37].

To set the humane endpoints in vaccine potency testing, identification of parameters which are predictive of death or severe clinical signs are required. Generally, two types of humane endpoints based on clinical signs and pathophysiological parameters (body weight and body temperature) are used. The use of humane endpoints during the potency testing of whole cell pertussis vaccine, human inactivated rabies, tetanus, and diphtheria vaccines has been shown in the Table 2 below:

Table 2. Examples of earlier humane endpoint for vaccine potency assays.
Table 3. Examples of serological potency assays as 3R alternative.

<table>
<thead>
<tr>
<th>S No</th>
<th>Vaccines</th>
<th>Animal Model</th>
<th>Traditional Potency test</th>
<th>Serological ELISA Assay as 3R alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tetanus toxoid vaccine and tetanus component in combined vaccines (Clostridium tetani)</td>
<td>Mouse/guinea pig</td>
<td>Lethal-paralytic challenge test</td>
<td>Single-dilution immunization and serology and 2-in-vivo toxin-binding inhibition (ToBi), indirect ELISA</td>
</tr>
<tr>
<td>2</td>
<td>Tetanus and diphtheria</td>
<td>Guinea pig</td>
<td>Serological test</td>
<td>Single dose</td>
</tr>
</tbody>
</table>
Further, a single-dilution assay can be a valid procedure to demonstrate that a product exceeds the minimal requirement given for potency provided that consistency in production and testing has been proven. Information is presented justifying the use of a single dilution assay based upon quantitative responses for establishing the potency of diphtheria toxoid vaccines. Data of 27 multi-dilution assays on the diphtheria toxoid component of DPT-polio vaccines were retrospectively analysed for consistency in production and testing. Criteria for analysis are given and a protocol for quality assurance of a single dilution assay based upon serology is discussed [50]. However, the use of single dilution assay for the purpose of the batch release is already allowed by WHO. Though, WHO Guidelines should clearly indicate in which circumstances the simplified assay could be used and in which circumstances full assay is required [51].

Besides, Safety, animal welfare (Refine/ reduce), efficiency and test monitoring is very much ensured by ELISA based serological tests if compared to conventional challenge test. In ELISA there is no direct exposure with virulent micro-organisms or toxin in the animal facility as well as with experimental animals, therefore the toxin, pain and distress levels in animals have been reduced from severe to minor. Additionally, the performance time is reduced by omitting the observation period and using a quantitative endpoint (antibody titre) which further allow a substantial reduction in the number of animals required per vaccine dose. Moreover, the serology also offers the storage of test samples i.e. serum material that can be reused for questions coming from post-marketing surveillance or for retesting of samples from vaccine manufacturers by regulatory authorities [52].

Nowadays, combination vaccines are receiving importance because of their continued demand for the protection against multiple diseases, especially in children. However, their potency estimates for each of active compound present a unique challenge. For example, potency testing for the DTaP combination vaccine typically requires separate tests for each of the major components (diphtheria, tetanus, and acellular pertussis). Therefore, combining the individual potency procedures into one serological test for multivalent vaccines would have an immediate and significant impact on reducing animal use.

In-vitro Immunological Tests

Immune response in vertebrate organism is most complex and interactive in nature, involving various cells of the immune system in a cascade of reactions after contact with the antigen. The main determinants in the cascade of reactions are antigen presenting cells (APCs), such as monocytes and dendritic cells, antibody-producing B lymphocytes, helper T cells, killer T cells and memory B and T cells. These cells are further supported by so-called accessory cells (fibroblast, endothelial cells) as well as cell products such as cytokines and chemokines that play an important role in intercellular communications [52].

Today there are several in-vitro immunogenicity models are available which range from very simple peripheral blood mononuclear cell (PBMC) cultures to complex co-culture systems including various types of immune cells as well as accessory cells. General conceptions about these models are that they hardly mimic the complex immune response, particularly when correlates of protection for specific immune parameters have not yet been established. However, some have shown good correlation between vaccine quality and cytokine profiles such as stimulation of PBMCs with tetanus toxoid [52].

The major limitations of these models are that they represent only a particular phase during the development of the immune response. Moreover, in-vitro conditions (antigen dose, cell density and cell–cell interaction) differ substantially from in-vivo situation. In these models, primary responses are difficult to measure due to low number of potentially responsive cells. Therefore, these models at present have been of little help for mandatory required quality control of traditional vaccines. However, the importance is continuously increasing in vaccine development studies that focus on studying a particular aspect of the immune response [52].

Antigen Quantification

Nowadays, some human vaccines do not require the use of animals because in-vitro methods have been developed that quantify the presence of the protective antigen. In-vitro antigen quantification tests are performed either mainly by determining the number of live particles in case of live attenuated bacterial
vaccines (e.g., Bacillus Calmette-Guérin, typhoid and cholera) or, in case of live viral vaccines, by virus titration in cell cultures using end points such as plaque formation, cytopathology and indirectly by virus neutralization using virus-specific serological reagents.

These tests are considered as state-of-the-art technique for lot-release potency testing of live attenuated vaccines or genetically modified live vaccines based on binding of key protective antigens to specific antibodies in an in-vitro immunoassay. At present, these methods represent the most promising in-vitro approaches for the replacement of animals used in vaccine potency testing. But these tests have been successfully implemented (regulatory acceptance) for only a few products. These include hepatitis A/B vaccines, inactivated polio vaccine, polysaccharide and polysaccharide conjugate vaccines, and human papillomavirus vaccine as shown in the Table 4 below:

Table 4. Examples of human vaccine potency tests that replace the use of animals.

<table>
<thead>
<tr>
<th>S No</th>
<th>Vaccine</th>
<th>Traditional test procedure</th>
<th>In-vitro methods</th>
<th>References methods for alternative methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hepatitis A vaccine (hepatitis A virus)</td>
<td>Mouse serology</td>
<td>Antigen quantification, ELISA</td>
<td>[53]</td>
</tr>
<tr>
<td>2</td>
<td>Hepatitis B vaccine (hepatitis B virus)</td>
<td>Mouse serology</td>
<td>Antigen quantification, ELISA</td>
<td>[54]</td>
</tr>
<tr>
<td>3</td>
<td>Inactivated polio vaccine (poliovirus)</td>
<td>Mouse serology</td>
<td>Antigen quantification, ELISA</td>
<td>[55,56]</td>
</tr>
<tr>
<td>4</td>
<td>Human papillomavirus vaccine</td>
<td>Mouse serology</td>
<td>Antigen quantification, ELISA</td>
<td>[4]</td>
</tr>
<tr>
<td>5</td>
<td>Erysipelothrix suipalatiae (swine Erysipelas)</td>
<td>Immunization challenge in mice</td>
<td>Antigen quantification-in-vitro ELISA</td>
<td>[57]</td>
</tr>
<tr>
<td>6</td>
<td>Bovine respiratory viruses (BRV, BVD, P13, BRSV) (cattle respiratory disease)</td>
<td>Antigen quantification-in-vitro ELISA</td>
<td>[58]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Newcastle disease virus (chicken respiratory disease)</td>
<td>Immunization challenge in chickens; ELISA or serology</td>
<td>Antigen quantification-in-vitro ELISA or serology</td>
<td>[59,60]</td>
</tr>
</tbody>
</table>

a-Published in the European Pharmacopoeia.
c-No mouse test in European Pharmacopoeia.
d-Not for routine lot release (Ph Eur).
e-Traditional method is antigen quantification.
f-Accepted by U.S. regulatory authorities.

Currently, in-vitro antigen quantification methods represent the most promising approaches for the replacement of animals used in vaccine potency testing. However, there are few limitations in antigen quantification test that it only measures antigen quantity which do not necessarily reflect biological activity. Another limitation for potency testing of inactivated vaccines is that most products include an adjuvant product. These adjuvants cause direct interference with assay (e.g., high background, non-parallelism). Therefore, the adjuvant has to be removed before antigen quantification and also need to ensure that the process used for removal of adjuvant does not affect recovery and/or integrity of the antigen, which could interfere with its detection in the assay [4].

High-Performance Liquid Chromatography (HPLC)/Polymerase Chain Reaction (PCR)

Nowadays, a majority of industries are inclining toward the use of in-vitro assays. Therefore, regulators in certain regions have been concerned with assessing the impact of the adjuvant on serial potency. This can be achieved through a variety of physical and chemical assays, including particle sizing, aluminium concentration, HPLC and through following tightly controlled Good Manufacturing Practices (GMP) in production systems and component specifications. Moreover, HPLC as an additional potential assay method has shown outstanding results for the quantification of the new purified peptide or subunit vaccines. But still there is need for further development and validation of this method.

Another method is quantitative polymerase chain reaction (qPCR) which has been proposed as an alternative to potency assay due to its ability to determine the number of organisms based on the nucleic acid copy number. However, since the qPCR does not measure either the expression or conformation of the target antigen, its use is limited to a potential supportive assay in combination with another assay. However, cell cultures based assays are widely accepted. Therefore, the use of cell culture toxicity as a replacement for mouse in clostridium antitoxin determination has also been proposed [61].

Acheviements of 3Rs methods in Vaccinology

In general, the development of an alternative method requires a clear understanding of the purpose for which the assay is to be used. Accordingly, it is important to discriminate between testing procedures for development of novel vaccine, the batch quality control of licensed vaccines and fully established products. Generally, it is possible to use tests which are
different from those used to determine the efficacy of novel formulations for the release of established products. However, these batch release tests should be a subset of those used to characterize the product going into clinical trials. To develop effective and credible alternative methods, it is essential to understand the mechanism of action of vaccine [11].

In vaccines, the relevant and robust assay development generally requires the knowledge of both the mechanism of induction of a protective immune response and the mode of action of the pathogenic entity in causing disease. Moreover, the development of mechanism based assays would also require an understanding of how virulence factors exert their pathogenic effects. Assays developed by following these criteria will lead to the complete replacement of animal models. However, lack of scientific knowledge at present limits the development of such mechanism based assays.

Table 5. Examples of 3Rs achievements for human vaccine potency tests.

<table>
<thead>
<tr>
<th>No</th>
<th>Vaccine Description</th>
<th>Traditional Method</th>
<th>Alternative Method</th>
<th>3R alternates</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Japanese encephalitis mouse immunogenicity assay followed by a Plaque Reduction Neutralization (PRN) Test (PRN Test)</td>
<td>ELISA to determine the E antigen content of the Japanese encephalitis virus</td>
<td>Replacement</td>
<td>[62]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tetanus toxoid vaccines Lethal/paralytic challenge test in the batch potency testing</td>
<td>ELISA procedure for Batch Potency Testing of Tetanus Vaccines</td>
<td>Reduction (Single-dilution test instead of multi-dilution), Refinement (Endpoint is not death)</td>
<td>[63,64]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Diphtheria Vaccine Lethal/Intradermal Challenge Test in the Batch Potency Testing of Diphtheria Vaccine</td>
<td>ELISA Procedure for Potency testing of Diphtheria Vaccines</td>
<td>Reduction & Refinement</td>
<td>[67]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Diphtheria component in combined vaccines (Corynebacterium diphtheriae) Guinea pig lethal challenge test</td>
<td>Erythema score following intradermal challenge in guinea pigs</td>
<td>Refinement (Endpoint is not death)</td>
<td>[70,71]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tetanus and Diphtheria vaccines Combination Tetanus and Diphtheria vaccines-separate serology tests for each vaccine</td>
<td>Tetanus and Diphtheria Serology test-single test for combination vaccine</td>
<td>Reduction</td>
<td>[67]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hepatitis B Vaccine Potency Test of Hepatitis B Vaccine (Mouse)</td>
<td>Serological Antigen Quantification</td>
<td>Reduction & Refinement</td>
<td>[67]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Inactivated Poliomyelitis Vaccine Serological Potency Test of Poliomyelitis (inactivated) Vaccine (Rat)</td>
<td>Antigen quantification</td>
<td>Replacement</td>
<td>[67]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Rabies Vaccine Lethal challenge test for Rabies Vaccine</td>
<td>Single dilution assay</td>
<td>Reduction</td>
<td>[67]</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Inactivated rabies virus vaccine Mouse multiple-dilution lethal challenge test</td>
<td>Convulsions, paralysis, paresis</td>
<td>Humane Endpoints for Rabies Potency Testing</td>
<td>Refinement</td>
<td>[67,72]</td>
</tr>
<tr>
<td></td>
<td>NIH mouse protection test</td>
<td>Multi-dose serological assay, based on vaccination of mice and subsequent determination of neutralizing antibodies in vitro.</td>
<td>Reduction, Replacement</td>
<td>Refinement</td>
<td>[73]</td>
</tr>
<tr>
<td></td>
<td>In-vivo rabies vaccine potency test (NIH test)</td>
<td>Time Resolved Fluoroimmunoassay (TRFIA) for the assay of rabies virus glycoprotein</td>
<td>Replacement</td>
<td>[74]</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Oral Polio Vaccine Oral Polio Neurovirulence Test (Monkey intra-cerebral)</td>
<td>Mutant Analysis by PCR and Restriction Enzyme Cleavage (MAPREC test) TgPVR21 Mouse Neurovirulence Test</td>
<td>Reduction</td>
<td>[75,76]</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Diphtheria Vaccine Residual Toxicity in Diphtheria Vaccine (Guinea pig)</td>
<td>Vero Cell Test of Diphtheria Toxoid Vaccines</td>
<td>Replacement</td>
<td>[77]</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>HBsAg Vaccine In-vivo method for HBsAg potency In-vitro method for HBsAg content using Auszyme EIA kit</td>
<td></td>
<td>Replacement</td>
<td>[79]</td>
<td></td>
</tr>
</tbody>
</table>
At the moment, there is a paradigm shift in the concept of vaccine quality control from classical to consistency approach. Main emphasis is being put on ensuring the consistency in production of a vaccine and not regarding each batch produced as a unique product. Therefore, the main focus should remain in monitoring of consistency rather than to establish the true effectiveness of a vaccine. The characteristics of a new batch of vaccine should be similar to those of a batch which has been shown to be safe and efficacious [2].

For classical animal tests, many alternative methods for the quality control of vaccines have been developed in last two decades and even they have been implemented successfully. But in some vaccine products, in-vitro assays will not be able to completely replace animal models but in near future, the potency testing in animals is likely to disappear when current vaccines are replaced by highly purified and well-characterised genetically engineered products. As these new generation vaccines are better defined and allow the use of in-vitro and physico-chemical methods for their quality control, thus using less or no animals for the quality control of batches. The 3Rs achievement in quality control of vaccine has is shown in Table 5 for human vaccines and Table 6 for veterinary vaccines below:

Table 6. Examples of 3Rs achievements for veterinary vaccine potency tests.

<table>
<thead>
<tr>
<th>S No</th>
<th>Vaccine</th>
<th>Traditional Method</th>
<th>Alternative Method</th>
<th>3R alternates</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Anthrax Adsorbed</td>
<td>In-vivo mouse immunogenicity test</td>
<td>Toxin neutralization assay (TNA) to measure antibodies to anthrax Protective Antigen (PA)</td>
<td>Replacement</td>
<td>[80-82]</td>
</tr>
<tr>
<td>14</td>
<td>Whole cell pertussis (wp) vaccine</td>
<td>Lethal Challenge potency testing</td>
<td>Two Phase Studies: Evaluation phase and Validation phase with Humane endpoints</td>
<td>Reduction and Refinement</td>
<td>[84]</td>
</tr>
<tr>
<td>15</td>
<td>Acellular pertussis component in combined vaccines cough pertussis</td>
<td>Multiple-dilution mouse serology</td>
<td>Immunization (mice) and Serology ELISA</td>
<td>Replacement</td>
<td>[85-87]</td>
</tr>
<tr>
<td>16</td>
<td>Hepatitis A vaccine (hepatitis A virus)</td>
<td>Mouse serology</td>
<td>Antigen quantification</td>
<td>Replacement</td>
<td>[88,89]</td>
</tr>
<tr>
<td>17</td>
<td>Inactivated polio vaccine (poliovirus)</td>
<td>Rat serology</td>
<td>Antigen quantification</td>
<td>Replacement</td>
<td>[88,90,91]</td>
</tr>
<tr>
<td>18</td>
<td>Human papillomavirus vaccine</td>
<td>Mouse serology</td>
<td>Antigen quantification</td>
<td>Replacement</td>
<td>[92]</td>
</tr>
<tr>
<td>19</td>
<td>Rotavirus vaccine</td>
<td>In-Vivo potency assays</td>
<td>Cell-based viral replication followed by quantitative reverse-transcription polymerase chain reaction (RT-QPCR) analysis</td>
<td>Replacement</td>
<td>[93]</td>
</tr>
<tr>
<td>20</td>
<td>Live Rubella Virus Vaccine</td>
<td>In-Vivo potency assays</td>
<td>In-vitro cytopathic effect (CPE) with rabbit kidney epithelial (RK-13) cell culture</td>
<td>Replacement</td>
<td>[94]</td>
</tr>
<tr>
<td>21</td>
<td>Smallpox virus vaccine</td>
<td>Titration onto chorioallantoic membranes of fertilized hen eggs (CAM assay).</td>
<td>Vero cell culture titration assay.</td>
<td>Replacement</td>
<td>[95]</td>
</tr>
<tr>
<td>22</td>
<td>Trivalent, live, measles, mumps, rubella vaccines (MMR).</td>
<td>CCID50 and plaque assays</td>
<td>Quantitative PCR after cell culture</td>
<td>Replacement</td>
<td>[96]</td>
</tr>
<tr>
<td>24</td>
<td>Acellular pertussis vaccines (ACPVs)</td>
<td>The histamine sensitization test (HIST)</td>
<td>Combination of enzyme coupled-HPLC (E-HPLC) and carbohydrate binding assays to examine both the functional domains of PT.</td>
<td>Replacement & Refinement</td>
<td>[98]</td>
</tr>
<tr>
<td>25</td>
<td>Cholera</td>
<td>Potency: multilidation vaccination + serology</td>
<td>Enzyme-linked immunosorbent assay (ELISA) filers of the antibody secreted in the cell supernatant.</td>
<td>Replacement</td>
<td>[99]</td>
</tr>
<tr>
<td>26</td>
<td>Haemophilus type B conjugate</td>
<td>Multilidation + serology</td>
<td>High throughput SBA for anti-Hib antibodies that would be useful for evaluating various Hib vaccines</td>
<td>Replacement & Refinement</td>
<td>[100]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Vaccine Type</th>
<th>Study Method</th>
<th>Study Endpoints</th>
<th>Serological Method</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inactivated swine erysipelas vaccines</td>
<td>Lethal challenge test in the batch potency testing of inactivated swine erysipelas vaccines</td>
<td>Serological Method (ELISA) for the Batch Potency Testing of Inactivated Swine Erysipelas Vaccines</td>
<td>Reduction & Refinement (Endpoint is not death)</td>
<td>[101,102]</td>
</tr>
<tr>
<td>2</td>
<td>Safety Test</td>
<td>Target Animal Safety Test</td>
<td>Deletion of test</td>
<td>Replacement</td>
<td>[103]</td>
</tr>
<tr>
<td>3</td>
<td>Inactivated rabies virus vaccine (Lyssavirus rabies)</td>
<td>Study endpoints used were Moribund condition or death</td>
<td>Convulsions, paralysis, paresis</td>
<td>Refinement</td>
<td>[104-106]</td>
</tr>
<tr>
<td>4</td>
<td>Inactivated swine erysipelas vaccine (Erysipelothrix rhusiopathiae)</td>
<td>Study endpoints used were Moribund condition or death</td>
<td>Pathognomonic, diamond shaped erythematous skin lesions, elevated temperature, arthritis</td>
<td>Reduction & Refinement (Endpoint is not death)</td>
<td>[107-109]</td>
</tr>
<tr>
<td>5</td>
<td>Fowlpox virus vaccine</td>
<td>Study endpoints used were Moribund condition or death</td>
<td>Pox lesions, warty eruptions/scabs on combs and wattles</td>
<td>Reduction & Refinement (Endpoint is not death)</td>
<td>[107,110]</td>
</tr>
<tr>
<td>6</td>
<td>Inactivated rabies vaccine (Lyssavirus rabies)</td>
<td>Immunization challenge in mice (intracerebral)</td>
<td>Immunization (mice) and serology: In-vitro antibody quantification-ELISA</td>
<td>Replacement</td>
<td>[111-113]</td>
</tr>
<tr>
<td>7</td>
<td>Inactivated swine erysipelas vaccine (Erysipelothrix rhusiopathiae)</td>
<td>Mouse lethal challenge test</td>
<td>Immunization (mice) and serology: In-vitro antibody quantification-ELISA</td>
<td>Replacement</td>
<td>[114,115]</td>
</tr>
<tr>
<td>8</td>
<td>Clostridium novyi (Type B); Bovine (Black disease)</td>
<td>Rabbit immunization/mouse toxin neutralization test</td>
<td>Immunization (rabbits) and Serology: In-vitro immunonochemical method or neutralization in cell cultures</td>
<td>Refinement and Replacement</td>
<td>[116,117]</td>
</tr>
<tr>
<td>9</td>
<td>Clostridium septicum; Bovine (malignant edema)</td>
<td>Rabbit immunization/mouse toxin neutralization test</td>
<td>Immunization (rabbits) and serology: In-vitro immunonochemical method or neutralization in cell cultures</td>
<td>Refinement and Replacement</td>
<td>[117,118]</td>
</tr>
<tr>
<td>10</td>
<td>Clostridium perfringens C/D; Bovine (Enterotoxemia)</td>
<td>Rabbit immunization/mouse toxin neutralization test</td>
<td>Immunization (rabbits) and serology: In-vitro immunonochemical method or neutralization in cell cultures</td>
<td>Refinement and Replacement</td>
<td>[116,117,119]</td>
</tr>
<tr>
<td>11</td>
<td>Tetanus Antitoxin Products; (equine); (Clostridium tetani)</td>
<td>Guinea pig immunization/ guinea pig toxin-antitoxin neutralization test</td>
<td>Immunization (guinea pigs) and serology: In-vitro toxin binding inhibition (TOBI), indirect ELISA</td>
<td>Refinement and Replacement</td>
<td>[120,121]</td>
</tr>
<tr>
<td>12</td>
<td>Leptospirointerrogans Serovancanciola Bacterin Canine (inactivated, adjuvanted and non adjuvanted)</td>
<td>Immunization challenge test in hamsters</td>
<td>Immunization (hamsters) and serology: in-vitro method to determine antibodies</td>
<td>Refinement and Replacement</td>
<td>[122]</td>
</tr>
<tr>
<td>13</td>
<td>Leptospirointerrogans Serovancanciola Bacterin Canine (inactivated, adjuvanted and non adjuvanted)</td>
<td>Immunization challenge test in hamsters</td>
<td>USDA Supplemental Assay Methods (SAM) 625</td>
<td></td>
<td>[123]</td>
</tr>
<tr>
<td>14</td>
<td>Rabies vaccine (Lyssavirus rabies)</td>
<td>Multiple-dilution assays</td>
<td>NIH potency test (Center for Veterinary Biologics (CVB) intends to eliminate the upper limit LD50 for a valid challenge when conducting the Rabies Virus)</td>
<td>Reduction</td>
<td>[131]</td>
</tr>
<tr>
<td>15</td>
<td>Brucella abortus (cattle brucellosis)</td>
<td>Invivo Potency Assay</td>
<td>In-vitro titration method determining colony-forming units (trypose agar)</td>
<td>Replacement</td>
<td>[132]</td>
</tr>
<tr>
<td>16</td>
<td>Erysipelothrix rhusiopathiae (swine erysipelas)</td>
<td>Vaccination challenge test in swine</td>
<td>In-vitro titration method determining colony-forming units (5% bovine blood agar)</td>
<td>Replacement</td>
<td>[133]</td>
</tr>
<tr>
<td>17</td>
<td>Mannheimia haemolytica (Pasteurella haemolytica) (cattle respiratory disease)</td>
<td>Vaccination challenge test in cattle</td>
<td>In-vitro titration method determining colony-forming units (trypticase soy agar)</td>
<td>Replacement</td>
<td>[134]</td>
</tr>
</tbody>
</table>
In conclusion, there is a need for rigorous in-process quality control monitoring than the end batch testing. Remarkable advancements have been made in the development, maintenance, and upgradation of in-vitro potency assays like ELISA, Cell culture, SDS-PAGE, 2-D gel electrophoresis, Serology, etc. which minimize the animal use and suffering. However, many hindrances are still encountered in the implementation of 3Rs principles for vaccine potency assays due to their unique compositions, multivalency, and long life cycles. Therefore, relentless research work is required by both health industries and regulatory agencies for the development and validation of robust 3Rs methods at the global scenario.

Other prevailing challenges in the implementation of 3Rs principles are the lack of comprehensive harmonization of regulatory requirements, cooperation by health authorities to

Microbiol Curr Res. 2018 Volume 2 Issue 3
accept deviations from established guidelines and strong incentive to develop and implement alternatives of animal testings valid for global regulations. All the alternative methods data should be validated with the in-vivo methods for comparison and thereafter should be included in the guidelines for quality control. Many countries are still using the traditional methods due to lack of mutual acceptance of data (MAD) between the regulatory agencies. If these advanced validated methods are strictly applied at the global level within the time-bound framework by the regulatory agencies, this might be helpful in reducing the numbers as well as the unwanted suffering inflicted to animals during the potency assays.

References

27. Knight PA, Roberts PAG. Studies on the minimal number of animals required to achieve assurance of satisfactory potency in diphtheria and tetanus vaccines. Develop Biol Stand. 1986;65:245-55.
30. The CCAC guidelines on: choosing an appropriate endpoint in experiments using animals for research, teaching and testing. 1998.

35. Code of Federal regulations. Title-9 Animals and Animal products, Chapter I, Subchapter E, Part 117, Section 117.4-Test animals.

37. USDA, Centre for Veterinary Biologics. 2012.

51. WHO consultation on DT potency assay and consistency measurement. 2002.

52. Hendriksen CFM. Replacement, reduction and refinement of alternatives to animal use in vaccine potency measurement Expert Rev. Vaccines. 2008;8:30.

61. Draayer H. Overview of currently approved veterinary vaccine potency testing methods and methods in

73. WHO Drug Information. 2017;31:1

USDA Veterinary Services Memorandum 800. 2012.

NICEATM-sponsored workshop on alternatives for botulinum toxin testing. 2006.

Correspondence to:

Suresh Kumar
National Institute of Biologicals,
Ministry of Health & Family Welfare,
Noida, Uttar Pradesh,
India
E-mail: suresh.kumar@nib.gov.in