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Introduction
With the emergence of the Internet of Things (IoT), various 
sensing devices are being exponentially utilized, and advanced 
data analysis such as artificial intelligence, deep learning, and 
model simulations are being developed. These data-driven 
research approaches allow inferences to be told by the “data 
itself” because prior beliefs are absent, “opening the possibilities 
of breakthrough insights where nobody had looked before” 
[1,2]. Karpatne et al. reported on “theory-guided data science 
(TGDS),” which attempts to take the next stage of knowledge 
discovery to realize the vision of the “fourth paradigm” fully 
[3]. They conceptualized the paradigm of “theory-guided 
data science,” where scientific models are in the process of 
knowledge discovery. In contrast, the conventional approach of 
knowledge-driven and theory-based model are limited by our 
current scientific understanding because data science models 
show limited performance when data are under-representative 
[3]. 

A new imaging technique has been developed for measurements 
in daily situations. Optical topography (OT) is a non-invasive 
procedure requiring less subject restraint than functional 
magnetic resonance imaging (fMRI), positron emission 
tomography (PET), and magnetoencephalography (MEG) [4]. 
OT can measure the product of cerebral hemodynamic changes 
(concentration changes of oxygenated and deoxygenated 
hemoglobin; ΔC⋅LHbO and ΔC⋅LHHb) and optical path length (L) 
using the near-infrared spectrum (650-900 nm). According to 
neurovascular coupling, hemodynamic changes may relate to 
local neural activity [5-7]. Several studies have been reported 
in which the OT system measured brain functions under various 

conditions [7-9]. In advanced OT systems, wearable optical 
topography that is more compact, flexible, and cost-effective 
has been developed for use in a wide range of situations [10-
13]. Therefore, simultaneous measurement data including 
OT data and other human or environmental sensing data 
have been expanded. Although progress has been achieved 
in the conventional approach by first generating hypotheses 
of theories and then collecting data to support or refute these 
hypotheses, the relationship between OT data and other sensing 
data is difficult to hypothesize because input data using sensing 
techniques gradually increase.

As described before, automatic analysis technology based on 
data-driven analysis provides us with a “statistically dominant 
analysis model.” We can easily process various sensing data 
and obtain multivariate analysis models. Despite the usefulness, 
selecting the best models to suit the hypotheses is difficult 
because of a heightened risk of data over-fitting, and these 
models consist of both well-known and new features; therefore, 
combining both data- and knowledge-driven approaches is 
necessary. The purpose of this study was to design classification 
methods for automated analysis combining data-driven and 
knowledge-driven approaches. These approaches were applied 
for OT data to obtain new findings. 

Materials and Methods
Dataset

Two datasets were collected independently. Dataset 1 was 
used as training data (N=120, age: 25-52, number of males: 
60, number of females: 60), and dataset 2 was defined as 
test data (N=40, age: 20-59, number of males: 30, number of 
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females: 10). Data from volunteers were obtained according to 
the standards of the internal review board in the Research and 
Development Group, Hitachi, Ltd., following receipt of written 
informed consent.

Experimental protocol

The participants’ mood states were checked using a questionnaire 
(i.e., Profile of Mood States/POMS) [14], and their depression 
mood scores were calculated by compensating for their age and 
sex. The subjects’ brain activity in the prefrontal cortex during 
spatial and verbal working memory tasks was measured using 
optical topography (47 channels, ETG-7100, Hitachi Ltd., Japan, 
Figure 1). The tasks consisted of two delayed matching tasks, 
one spatial, the other verbal. In the spatial working memory 
task, participants were asked to encode the position of four red 
squares among displayed eight squares within 1.5 sec (target 
stimulus) and to maintain the spatial information for 7 sec. A 
probe stimulus showing a red square among eight squares was 
displayed for 2 sec after the maintenance period. Participants 
needed to respond using a button if the position of the red square 
in the probe stimulus was identical to two of eight squares in the 
target stimulus. In the verbal working memory task, as shown 
in Figure 1b, four Japanese characters in Hiragana were used as 
the target stimulus, and one Japanese character in Katakana was 
used as the probe stimulus. Both the targets in Hiragana and the 
probe in Katakana had the same phonic; however, the shape of 
both types of characters was different. Thus, participants had 
to memorize and answer in the verbal working memory task 
phonologically. Each task was repeated eight times. We used a 
spatial registration method to speculate on the locations of 47 
channels with optical topography in the Montreal Neurological 
Institute (MNI) space [15,16].

Data analysis

The signal of concentration changes of oxygenated hemoglobin 
(oxy-Hb) during the verbal working memory task was used 
for analysis. Analyses were computed using MATLAB (The 
MathWorks, Inc., USA) and a plug-in-based analysis platform. 
The Platform for Optical Topography Analysis Tools (POTATo) 
was developed by Hitachi Central Laboratory, and a tutorial 
is available [17]. The signal processing procedure including 
filtering and denoising was performed according to previous 
working memory studies by Aoki et al. [18] and Sato et al. [19]. 
As follows their procedure, in detail, the time-continuous data 
of the oxy-Hb signals for each channel were separated into task 
blocks, which were defined as 25.5-s periods starting from 1.0 

s before Target onset and ending 16.0 s after Probe onset, each 
containing a WM task trial. We removed blocks contaminated 
by a motion artifact, which was defined as a raw oxy-Hb signal 
change larger than 0.4 mM⋅mm over two successive samples 
(200-ms duration). The remaining data were baseline-corrected 
by linear regression based on the least squares method by using 
the data for the first 1.0 s the last 4.0 s of each block.

Finally, the oxy-Hb signal was formatted as 25.5-sec block data 
with the arithmetic mean. The classification method combining 
data - and knowledge-driven approaches was performed in three 
steps. 

Dataset 1 was used as training data in step 1, and dataset 2 was 
used as test data in step 3. Dataset 1 was divided into two groups 
for training based on the score of 50 POMS_D. Depression-
high group means were over 50 in the POMS depression. We 
prepared three datasets for training (dataset 1(a); N=120, dataset 
1(b); N=60, dataset 1(c); N=60). Both dataset 1(b) and dataset 
1(c) included sixty data consisting of fifteen high depression 
data and forty-five low depression data. The depression scores 
between dataset 1(b) and dataset 1(c) were not significantly 
different (Levene’s test: p=0.515, unpaired t-test, t(113)=1.138, 
p=0.257).

Step 1: Capturing of brain features regarding depressed 
mood using the data-driven approach

The significant features of brain activity regarding depressed 
mood were obtained using the data-driven approach. The 
features of brain activation defined in previous research were 
captured automatically [20]. Ten brain features were prepared: 
“the average value,” “the maximum value,” “the peak value,” 
“latency,” and “the integral value” during the task period. “The 
brain mood score” was calculated according to previous reports 
[21]. They found that brain activity during verbal working 
memory tasks was significantly affected by depressed mood, in 
contrast, the brain activity during spatial working memory tasks 
showed differences that were not statistically significant. Using 
this phenomenon, they created a parameter regarding subjective 
depressed mood using the difference in the brain activity 
between two working memory tasks. The formula is as follows.
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Figure 1. Experimental protocol.
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starting point in each spatial (s) and verbal (v) working memory 
task. σs

2 and σν
2 represent an unbiased estimator of population 

variance. ns and nv show task repetition. “The average of 6-9.5 
sec from the block starting point” related to POMS depression 
[18,19], “Z-value of the average 6-9.5 sec from the block starting 
point.” “The average of 11.4-13.0 sec from the block starting 
point” related to BDI- II [22]. A correlation between brain 
activity and BDI- II was found. The “Laterality index” using the 
average of left and right channels was performed using every 
two channels in the left BA46 (Ch25–Ch26) and in the right 
BA46 (Ch22–Ch23) [23]. Next, nine brain function areas were 
prepared for collecting the brain features in the left Brodmann 
Area (BA) 46, right BA46, BA10, BA11, left Broca, right Broca, 
dorsolateral prefrontal cortex (DLPFC), left DLPFC, and right 
DLPFC. These discriminations were determined according to 
spatial registration results. Consequently, nine features in each 
of the 47 channels, in nine brain function areas, and the laterality 
index were calculated; we obtained over five hundred features. 
Prediction models of depression-high or -low group were 
performed using ridge regression analysis with all features. The 
ridge regression method was adapted to avoid over fitting [24]. 
This training procedure was repeated three times (dataset 1(a)-
(c)) to determine the significance of each feature. The accuracy 
of the models was evaluated using correctly classified instances. 
Mean absolute error was shown as the evaluation index of the 
model accuracy [25]. 

Step 2: Classification of the availability of brain features 
using the knowledge-driven approach

The availability of each feature was classified using the 
knowledge-driven approach. We focused on the frequency of 
features among the models and selected the high frequency features. 
In addition, these features were reviewed with previously related 
findings and classified as available features or new features. 

Step 3: Examination of the generalization ability regarding 
the model using classified features

The generalization ability of the models using these classified 
features was examined using training data (dataset 1(a)) and 
test data. The correctly classified instances of the models 
with nominated features were compared with the results of 
the training data and test data. The rate of improvement was 
calculated.

Results
Step 1: Capturing of brain features regarding depressed 
mood using the data-driven approach

A hundred prediction models regarding depression-high or 
-low groups were obtained using ridge regression, and we 
selected the models with correctly classified instances equal 
to or more than 80%, and with under ten explanatory features. 
Table 1 shows all features in the selected models. Each model 
included 4-10 features. Correctly classified instances in the test 
data were shown to be lower than those in the training data by 
approximately 20% (Figure 1). 

Step 2: Classification of the availability of brain features 
using the knowledge-driven approach

As shown in Table 1, each model represented 4-10 features. 
The high frequency features among the models were selected. 
Consequently, “The average during the task period” of the left 
Broca and latency of the right Broca/BA46/BA10 were shown 
as common features among the three models. The integral value 
of the left Broca and “The average during the task period” of the 
right_Broca/BA46 were indicated in two models. Thus, these 
features were selected and reviewed in previous related findings. 
In OT studies, the correlation between depressed mood and the 
average or the integral value was well established in several 

Model Features of brain activity Brain function area Channel Correctly classified instances (%) 
(Mean absolute error)

[Training data] [Test data]

Model 1

Latency Left_broca ch 17

84.16
(0.2758)

64.1
(0.4089)

Latency Right_broca/BA46 ch 22
Latency BA10/BA46 ch 25

The average value Left_broca ch 36

Model 2

The integral value Right_broca/BA46 ch 22

81.66
(0.2751)

74.35
(0.3928)

The average value Right_broca/BA46 ch 22
Latency BA10/BA46 ch 23
Latency Right_broca ch 31

The integral value Left_broca ch 36
The average value Left_broca ch 36

Model 3

The integral value Left_DLPFC ch 15

86.66
(0.2034)

61.53
(0.3945)

Maximum value Right_broca ch 22
The average value Right_broca ch 22

Latency BA10/BA46 ch 23
The average value BA10/BA46 ch 23

Latency Right_broca ch 31
Latency BA10 ch 35

The average value Left_broca ch 36
Maximum value Left_broca ch 36

The integral value Left_broca ch 36

Table 1. Prediction models using data-driven approach.

Two common features among the models are shown in bold. Two common features in two models are shown in italics. The average value indicates 
“The average during the task period.” The right_broca/BA46 and BA10/BA46 representing both brain function areas were included in the same 
spatial location. The other brain function area as shown in the table included over 70% of spatial locations.
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research findings, in contrast, the latency of the OT signal had 
fewer findings related to daily depressed mood [26,27]. Finally, 
the features of the integral value and the average value during 
the task were classified as available features. One feature, 
latency, was nominated as a new feature. As shown in Table 2, 
model 4 was represented by the integral value and the average 
value. Model 5 was set using the integral value, the average 
value, and latency. 

Step 3: Examination of the generalization ability regarding 
the model using classified features

Prediction model 4 and model 5 regarding the depression-high or 
-low group in the training data and test data were examined using 
ridge regression (Table 2). In the test data, correctly classified 
instances in model 4 using the integral and the average value 
were shown to be 69.23%. A new feature (latency) was added 
to model 5, and 82.05% of instances were correctly classified. 
As a result, an approximately 13% improvement was observed 
(Figure 2). In the training data, over 80% of instances in model 
4 and model 5 were correctly classified. Finally, in model 5, 
no differences in the percentage of correctly classified instances 
of training data and test data were found. We found latency 
as a new feature and compared the latency of depression-high 
and low groups. The latency of the depression-high group was 
longer than that of the depression-low group (Levene’s test: 
p<0.005, Welch-test, t(64.568)=2.338, p<0.05).

Discussion
We herein propose the classification method of the OT analysis data 
and its combination of the data- and knowledge-driven approaches. 

This new approach has three steps. In the first step of our 
experiment, the significant brain features related to depressed 
mood were captured using the data-driven approach (Table 
1). Through this step, over five hundred features regarding 
depressed mood were captured. However, each model has 
various significant features; we have to choose and explain 
the results. Thus, the three models were selected using 
correctly classified instances (over 80%) and a number of 
explanatory features (max: ten features). As shown in Table 1, 
the percentage of correctly classified instances of the test data 
was lower than that of the training data. This suggests that each 
model of training data has important features or new findings 
or overfitting of features. Therefore, the knowledge-driven 
approach is necessary.

In the second step, these features were classified as either 
available features or new features using the knowledge-driven 
approach. In Table 1, the average value and the latency are 
shown among three models. Also, the integral value is shown 
between two models. The results suggest that these features 
are related to depressed mood. However, the results do not tell us 
which features are the most important, which findings are new, or 
what the most suitable explanation is regarding depressed mood. 
In this step, previous research findings related to each feature were 
reviewed, and the availability of each feature was classified. As 
a result, although the integral value and the average value were 
defined as the available features because of the previous findings, 
few articles regarding depressed mood and NIRS studies 
covered latency. Thus, latency was classified as a new feature. 
Finally, model 4 (available features) and model 5 (available and 
new features) were obtained using step 1 and step 2. 

In the third step, the generalization ability of model 4 and model 
5 including classified features were examined. Over 80% of 
classified instances of model 4 and model 5 were correct in the 
training data. The same was true for model 1-3, suggesting that 
these features included in each model are highly correlated with 
depressed mood. In the test data, correctly classified instances 
in model 5 were found to be higher than those in model 4. This 
suggests that model 5 included latency as one of the important 
features regarding depressed mood. Model 5 was shown to have 
higher generalization ability than model 4. If the percentage of 
correctly classified instances in model 5 was shown to be less 
than that of model 4, latency was judged to be an ungeneralized 
feature. The data-driven approach gives us numerous significant 
features including available, new, and temporary fittings related 
to the response variables in some cases. Therefore, generalizing 
other data is difficult. Using the combining data-driven and 
knowledge-driven approaches, we found that latency was 
one of the new features related to depressed mood. In some 

Model Classification by 
knowledge

Features of brain activity Brain function area Correctly classified instances (%) 
(mean absolute error)

[Training data] [Test data]
Model 4 Available The integral value Left_broca 80.83

(0.2883)
69.23 

(0.4476)The average value
Model 5 Available The integral value Left_broca 81.66 

(0.2738)
82.05 

(0.3712)The average value
New Latency Right_broca/BA46

BA10/BA46

Table 2. Prediction models using knowledge-driven approach.
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Figure 2. Comparison of correctly classified instances of each 
prediction model with training data and test data. Correctly classified 
instances in model 1–model 3 show the average of the three models in 
Table 1. Model 4 includes the available features, and model 5 includes 
the available and new features.
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studies, participants with depression had different cognitive 
and attentional bias. Because their attentional and cognitive 
processing are stacked when they look at negative information, 
they have trouble shifting their attention away from the 
information. Thus, the bias affects their cognitive processes 
[28,29]. Neuroimaging research found they have inner 
processing regarding bias related to DLPFC activation [30]. In 
this experiment, although meaningless verbal characters were 
used, it was suggested that the participants with high depressed 
mood have had a specifc bias. Hence, the latency of the high-
depression group was longer than that of the low-depression 
group. Further research is needed, though. Several limitations 
of our study need to be considered. We used information on 
related research findings as the knowledge-driven approach, 
however, other knowledge can be used, such as the consistency 
of the hypothesis or other statistical parameters which used in 
previous researches. It might generate a knowledge index to 
classify the features and help us to judge prediction models.

The data-driven approach provides us with numerous significant 
models automatically; however, we have to choose and explain 
the value of the results, such as their importance, suitability, 
and novelty. Our proposal method, the combined data- and 
knowledge-driven approach, was useful in classifying the 
availability of features and evaluation of models. Besides the 
commonness of features, we need to determine more specified 
methods in future work.
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