Primary pulmonary hemosiderosis-a rare cause of Microcytic hypochromic anemia

Author(s): Pankaj.S. Rathi, Chetan.G, Rajiv Aggarwal, Usha Kini, Bhanumathi Rao

Vol. 15, No. 1 (2011-01 - 2011-06)

Pankaj.S. Rathi, Chetan.G, Rajiv Aggarwal, Usha Kini*, Bhanumathi Rao*

Department of Paediatrics, Narayana Hrudayalaya Institute of Medical Sciences Bangalore, Bangalore, India

Department of Pathology*, St. John’s Medical College, Bangalore, India

Abstract

Iron deficiency anemia (IDA) is the most common cause of anemia in children. In developing countries, the underlying nutritional deprivation makes IDA the most commonly diagnosed condition and empirical iron supplementation is more or less a norm. Peripheral blood smear picture of microcytic, hypochromic anemia gives an appropriate lead. However, failure of iron therapy and exclusion of its common causes prompts us to look at other diagnostic possibilities. Idiopathic pulmonary hemosiderosis is one such rare condition. We report a two-year female child with persistent microcytic hypochromic anemia with recurrent hospitalizations for respiratory symptoms not attributable to anemia. The purpose of this paper is to create awareness about Idiopathic Pulmonary Hemosiderosis as a possible but rare cause of microcytic, hypochromic anemia associated with respiratory distress and to delineate diagnostic difficulties and possible pitfalls.

Keywords: Primary pulmonary hemosiderosis; Microcytic hypochromic anemia

Accepted April 11, 2010

Case report

A 2-year female child from rural south India was brought to our outpatient department with complaints suggestive of acute lower respiratory tract infection and severe pallor. Past history revealed similar complaints warranting three hospitalizations, and thrice blood transfusions. Physical examination revealed a Grade II Protein energy malnutrition, hypopigmented hairs, platynychia. The child was in congestive cardiac failure. Auscultation of chest revealed occasional rhonchi and crepitations. The liver was palpable 5 cm below the right costal margin with a span of 12 cm. The rest of the systemic examination was normal. Investigation revealed hemoglobin of 6.3 gm/dl. Red blood cell indices and peripheral blood picture was suggestive of microcytic hypochromic anemia. Iron pro-file revealed an increase in Total iron binding capacity. In view of pallor, failure to thrive and recurrent respiratory symptoms, gastroesophageal reflux study was done which was negative. Stool examination was negative for ova, cyst and occult blood. Chest X-ray revealed bilateral dif-fuse non-homogenous infiltrates. The child was trans-fused with 10 ml/kg of packed red blood cells. She was discharged on oral iron therapy (6 mg/kg/day of elemental iron) and antihelminthics. At discharge, her hemoglobin level had risen to 9.5 gm/dl.
Two months later, she presented again with low grade fever, cough and respiratory distress. Examination revealed severe pallor, congestive cardiac failure. Investigations showed Hb of 7.6 gm which had dropped by 1.9 gm/dl despite good compliance to iron supplementation. Chest X-Ray showed bilateral reticulonodular pattern (Fig 1).

Figure 1. Chest radiography showing bilateral pulmonary infiltrates

Figure 2. Photomicrographs (H&E x 250) showing lung parenchyma with hemosiderophages in the alveolar space and in the lumen of the bronchiolar lumen but sparing the interalveolar septae. Note the normal histology of the peribronchial blood vessel.
Serum bilirubin was 2.1 mg/dl with indirect fraction of 2 mg/dl. The reticulocyte count was 2.8%. The peripheral smear showed no evidence of hemolysis. Bone marrow aspiration and biopsy were normal. In view of failed response to oral iron therapy, Upper GI endoscopy, colonoscopy and RBC scan was done to rule out occult bleeding all of which were negative. On direct questioning, the parents gave history of sudden onset of respiratory distress and at the end of each of these episodes, the patient required blood transfusion. This happened three times in a span of 6 months. In view of definite temporal correlation of acute onset of respiratory distress and pallor, a diagnosis of Pulmonary hemosiderosis, probably idiopathic (IPH) was considered. After initial stabilization, a thoracoscopic lung biopsy was done. At microscopy, the architecture of lung parenchyma was intact but exhibited dense aggregates of macrophages with intracellular brown pigment which was Perls’ positive confirming it as hemosiderin. These hemosiderophages were also noted in the lumina of the adjacent bronchioles (Figs. 2 & 3). The interstitium showed evidence of fibrosis. The blood vessels were histologically normal ruling out vasculitis. No granulomatous inflammation was noted in the lung tissue examined. These features confirmed a histologic diagnosis of primary pulmonary hemosiderosis by correlation with the clinical, laboratory and histological data.

Discussion

Idiopathic pulmonary hemosiderosis (IPH) is a rare disorder of unknown etiology characterized by iron deficiency anemia, recurrent or chronic pulmonary symptoms such as cough and hemoptysis and diffuse pulmonary infiltrates [1]. The incidence is reported from 0.24 to 1.23 cases per million in selected populations [2]. The clinical course of IPH is exceedingly variable; anemia, cough and radiological evidence of pulmonary infiltrates are seen in most of the affected individuals but in the absence of pulmonary problems diagnosis and treatment may get delayed. Individuals of any age can be affected and it occurs with equal frequency in males and females [3,4]. Although its etiology remains unknown, IPH is considered to be an immune mediated disease.

The presence of ANCA is thought to be a sign of poor prognosis for pulmonary progression. The presence of other antibodies seems to be the predictor for development of an immune response. Several cases were reported with iron deficiency anemia, pulmonary symptoms including cough, dyspnea and hemoptysis, diffuse parenchymal infiltrates on chest radiographs [2,5]. Diagnosis can be delayed in patients without pulmonary symptoms [6,7]. Despite presence of pulmonary symptoms, diagnosis was delayed in our case by 2 months as we did not correlate the two symptoms and attributed the low hemoglobin to iron deficiency anemia. The diagnosis can be confirmed by demonstration of hemosiderin-laden macrophages in the gastric aspirates or BAL. Biopsy is essential for diagnosis if BAL results are not confirmatory [8]. In our patient, IPH was confirmed by the finding of hemosiderin filled macrophages in lung biopsy material as in other studies [2,7]. A diagnosis of primary pulmonary hemosiderosis was considered at histology taking into consideration, the age of the patient, negative history for exposure to iron compounds, and the presence of pigment accumulation predominantly in the alveolar air spaces rather than in the...
Interstitial peribronchial vascular distribution associated with fibrosis which is the feature associated with secondary pulmonary hemosiderosis. [9]. Our patient was started on oral iron supplementation and oral prednisolone(2mg/kg/day).

We conclude that IPH should be considered when investigating a possible cause of iron deficiency anemia with respiratory symptoms especially in patients who require multiple blood transfusions. A more rapid diagnosis in the form of cytology of sputum or examination of bronchoalveolar fluid could have helped us in the early diagnosis of pulmonary hemosiderosis.

References


Correspondence:
Rajiv Aggarwal
Department of Pediatrics
Narayana Hrudayalaya Institute of Medical Sciences
258/A, Bommasandra Industrial Estate
Anekal Taluk, Bangalore 560099
India

Rathi/ Chetan/ Aggarwal/Kini/Rao
Curr 4 Pediatr Res 2011 Volume 15 Issue 1