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Abstract

In the present world of large distributed systems and energy shortages, energy efficiency has become
mandatory. One way to achieve this is by proper scheduling of tasks in a system of connected and
dissimilar machines to minimize the energy consumption. Also, Jobs have to be scheduled properly to
different systems in order to achieve maximum utilization of machines. “Makespan” has been the
standard optimization criteria used in scheduling algorithms. Makespan is the time elapsed until all jobs
scheduled are completely processed. A scheduling algorithm must look to minimize the makespan while
satisfying the precedence constraints between the tasks. Though the problem is NP-hard, many
algorithms have been proposed. There are algorithms proposed to reduce the energy consumption for
uni-machine systems and sequential tasks. Our algorithm tries to reduce the overall energy consumption
of a schedule in parallel and distributed systems by minimizing the idle state times of machines and
thereby, keeping the makespan as low as possible. Our algorithm is more practical and executes much
faster compared to the previous works on energy-aware scheduling.
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Introduction
In the modern world, from the perspective of sustainability,
there is a growing need for energy efficient scheduling of
distributed systems. Much less work has been done on energy
aware scheduling and the topic needs more research to be
done. Proper scheduling of various tasks on heterogeneous
machines can achieve efficiency but scheduling a parallel
program on a simplest case of two machine system is itself an
NP-complete problem and hence, finding optimal schedules of
various dependent and parallel tasks on a number of machines
is a very challenging open problem.

Background
Existing approximate solutions using genetic algorithm and
cellular automata work on exponential search space and have
huge scheduling overheads [1]. Though they seem to be
successful in finding near optimal schedules, their execution
times are so high that they become useless as the number of
tasks and machines increases, increasing the search space
exponentially. On the other hand, simple heuristics based
techniques execute much faster but often result in a sub
optimal solution. Thus, there is a need for a relatively fast
algorithm which would also give better schedules. As the

number of machines increases, the time for which each
machine remains idle also increases. In that case, the total
power consumption of a schedule is largely dependent on the
idle state power consumptions of each machine. Increasing the
utilization of each machine reduces the overall idle state power
consumption of the system and hence the total energy of
schedule. Also, increasing the utilization means more packed
scheduling and hence, lesser makespan. Thus, minimizing
makespan and energy complement each other as the number of
machines increases. The existing algorithms on energy aware
scheduling [1] have assumed the task weight (execution time
of a task) to be the same on all the connected machines which
is not the case in real world heterogeneous distributed systems
[2-4].

Our Work
The objective of our work is to develop a relatively fast
algorithm which would take in the configuration of machines,
the dependencies among tasks and power specification of
machines as inputs and produce a near optimal schedule which
minimizes both makespan and the total energy consumption of
the schedule. The algorithm must also be more practical and
model the real world heterogeneous distributed systems well.
Our algorithm optimizes the program graph level-wise,
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recursively with a backtracking implementation. Each level is
separately optimized and the final near optimal schedule is
obtained by combining the level-wise optimized sub-schedules.
Thus, the problem is split into a number of sub problems and
the final solution is obtained by combining the optimal sub
solutions. A formal definition of the scheduling problem and
our proposed algorithm is explained in Section II. The results
obtained by simulating our algorithm on standard program
graphs are presented in Section III. The conclusion and the
scope for future work are discussed in Section IV.

Energy Efficient Makespan Scheduling (EEM
Scheduling)
The system model we have used is the same as proposed by
Agrawal et al. [1] with a slight modification in the program
graph so that it models the real world heterogeneous
distributed systems well. The algorithm takes in a system
graph, a program graph and power specifications of machines
and maps each task in the program graph to a machine in the
system graph such that the total energy of the schedule and the
makespan are both kept low.

System model
The system model consists of a system graph, power
specifications of machines and a program graph [1].

System graph: It is an unweighted undirected graph
describing the connections between individual machines of the
system. The cardinality Nm is the number of machines. In our
simulations, we have assumed a fully connected mesh topology
with Nm=2, 4, 8.

Program graph: It describes each task and dependencies
among different tasks. Each node represents a task and the
edges represent the dependencies among various tasks. Each
node is associated with a list of weights. The weight w (i, j) of
node i is the execution time of task i on machine j. The edge
weight represents the transfer cost which is the cost of
communication when the two nodes connected by the edge are
scheduled in different machines. Figure 1 shows an example
modified program graph which models the real world
distributed systems well.

Figure 1. An example program graph: Weight lists denote execution
costs of various tasks on various machines. Edge weights denote
transfer costs and direction of edges denote precedence constraints.

Power specifications: Each machine’s power specification is
represented by its active state and idle state power
consumptions (Table 1).

Table 1. Power consumption specification [1].

Symbol Meaning

µ (Cu) Power consumption of machine Cu in working state

kµ (Cu) Power consumption of machine Cu in idle state. 0<=k<=1

τc (Cu) Time for which machine Cu remains in working state

τi (Cu) Time for which machine Cu remains in idle state

Brute force solution
Let the number of tasks be Nt. A simple brute force solution
for finding the optimal schedule would be to try all possible
combinations of tasks on all machines. In that case, each task
might be scheduled in any of the Nm machines. This algorithm
is exponential with respect to both number of tasks and number
of machines. The complexity of the algorithm is O (NmNt).
This is clearly not practical to implement and use in any real
world industry. However, this solution can be optimized
greatly which would result in a very near optimal solution and
also have practical running times [5,6].

Proposed technique and complexity
Our algorithm splits the scheduling problem into various sub
problems, each sub-problem being finding an optimal schedule
of tasks in a single level in the program graph. Since tasks
within a single level can be effectively parallelized and tasks in
different levels have dependencies among them and have to be
scheduled one after the other, it is a very reasonable
approximation to find optimal schedules of each level
separately and then combine the optimal sub-schedules which
would result in a global near optimal solution. Let the number
of tasks in level i be Nt, i and the number of levels be n. We
have,∑� = 0

� − 1��, � = �� (1)
Clearly,

Nt, i ≤ Nt, 0 ≤ i<n → (2)

Nt, i=Nt if f n=1 and i=0 → (3)

Hence, the complexity of level wise optimized brute force
solution would be O (NmNt, 0)+O (NmNt, 1)+….+O (NmNt, n-1)
which is way better than O (NmNt). Clearly, this is a better
solution compared to the normal brute force but this still is
impractical when tasks count in a single level increases beyond
a certain number. Though there may be a number of tasks in a
single level, we cannot have more than Nm tasks executing at
the same time since we have only Nm machines. In that case,
we can split the tasks in a single level into subsets, each subset
having at most Nm tasks and schedule each subset optimally
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using brute force (i.e. when we have 12 tasks and 4 machines,
at any point in time we can only have at most 4 tasks executing
in parallel. Thus the 12 tasks can be split into 3 sets of 4 tasks
each and each set can be scheduled optimally using brute
force). Thus, we have sub-problems within a sub-problem.
This is the technique that we propose.

The complexity of scheduling each level i in the proposed
approach is less than or equal to O (Nt, i/Nm× NmNm), 0 ≤ i<n.
Hence the complexity of the complete algorithm is always less
than or equal to O (Nt/Nm×NmNm). We could clearly see that
the complexity of the proposed algorithm is no longer
exponential with respect to the number of tasks. Considering
the fact that earlier works on energy efficient or minimum
makespan task scheduling in heterogeneous distributed systems
have considered systems with a maximum of 8 machines, our
algorithm finds a near optimal schedule in less than 10 seconds
which is extremely faster compared to the existing algorithms.

The energy consumption of the resultant schedule is calculated
as follows [1].

� =∑� = 1
�� � �� �� �� + �� �� �� �� (4)

In order to minimize E, we would have to minimize τi (Cn) μ
(Cn) and kμ (Cn) are fixed for a given set of machines. Also, the
sum of execution times of all the tasks does not vary
significantly on increasing the number of machines. Hence, the
only parameter that significantly varies as the number of
machines increases is the time for which each machine remains
idle. If we can minimize this parameter, we would obtain an
energy efficient schedule. The utilization of each machine is
obtained from the formula [7].

� = �� ���� �� + �� �� (5)
Clearly, minimizing idle times of machines (τi (Cn)) increases
the utilization. As the utilization of each machine is improved,
we get more packed scheduling and thus end up with reduced
makespans [1,8]. Thus, minimizing total energy consumption
and minimizing makespan complement each other.

Dynamic programming optimization
Within each level, nodes have to be considered in some order
for scheduling by the brute force logic [6]. This order is
determined by the total number of tasks in the higher levels
which are dependent on the tasks in the lower levels.
Scheduling earlier a task which has more number of dependent
tasks minimizes the makespan, as those dependent tasks can
also be now scheduled earlier. Hence, nodes in each level are
ranked based on the total number of outgoing edges from each
node and its successor nodes recursively. Let R (i, j) be the
rank of jth node in ith level and s be the number of immediate
successors of that node. We have,

� �, � = �+∑� = 1
� � �+ 1, �� (6)

Where R (i+1, jy) is the rank of yth successor of jth node in
level i. We have solved this recurrence using dynamic
programming. The nodes in the bottom most level of the
program graph have no outgoing edges and hence their ranks
would be 0. Traversing the graph from the bottom most level to
the root level, we assign ranks to each node in each level as per
the recurrence relation given. We thus have each level sorted,
passing which to the brute force algorithm results in better sub
schedule and overall near optimal solution [2,9].

The criteria used for determining the best sub schedule by the
brute force algorithm can either be time or energy.
Surprisingly, results of simulating our algorithm on standard
graphs like g18, g40, tree15 and guass18 with minimum time
as the criterion for choosing the best sub schedule in each
level, resulted in overall schedules which had better energy
values than the overall schedules that were obtained using
minimum energy as the criterion for choosing best sub
schedules in each level. This supports our claim that
minimizing makespan by minimizing the idle state times of
each machine, reduces the overall energy consumption. Thus
minimizing time and energy complement each other [4,10].

Algorithm

Algorithm 1. Algorithm for CA+GA.
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Figure 2. Architecture of CA+GA.

Algorithm 2: The proposed algorithm
Our algorithm uses the user defined classes as described in
Table 2.

Table 2. Classes used by EEM scheduling algorithm.

Class Data members

Variable Type

Task name Integer

weight_list ArrayList

predecessor ArrayList

Machine name Integer

idle_pwr Float

active_pwr Float

TaskSchedule task Task

machine Machine

start_time Integer

end_time Integer

Other variables that are used by the algorithm are as follows

• Task_obj, which is an array list of objects of Task class. It
stores the details of each task.

• Machine_obj, which is an array list of objects of Machine
class. It stores the details of each machine.

• Transfer_cost, which is a two dimensional adjacency matrix
of integer type. transfer_cost [i] [j] is equal to the
communication cost if tasks i and j are scheduled in
different machines. It is equal to -1, if there is no edge
between tasks i and j.

• Schedule_graph, which is a two dimensional array list of
objects of TaskSchedule class. It stores the details of where
and when each task is scheduled. schedule_graph [i] gives
the schedule of ith machine.

• Sched, which is an array list of objects of
TaskScheduleclass. It stores the details of how each task is
scheduled, their start times, end times and machines in
which they are scheduled.

• Levels, which is a two dimensional array list of integers
storing the individual levels in the program graph.

• Total_energy, which is a float variable storing the total
energy consumption of the best schedule.

The steps involved in the algorithm are as follows.

1. Get the system graph, program graph and power
specification as input

2. Populate task_obj, machine_obj and transfer_cost
adjacency matrix

3. Split the program graph level-wise and store the individual
levels in levels

4. Sort the nodes in each level based on the rank (number of
outgoing links from each node and its successor nodes
recursively). We use dynamic programming to simplify this
step.

5. Initialize schedule_graph and sched objects
6. For every level ‘i ‘do,
7. Split the tasks in level ‘i’ to sets of at most Nm elements

and call schedule_level () on each set.
8. Update schedule_graph
9. Update sched
10. Calculate total_energy and print it
11. Print schedule_graph

Function schedule_level () tries all combinations of tasks in the
specified set that is passed as a parameter, and returns the best
schedule with minimum running time [1,11,12].

Results
Our algorithm was tested on standard program graphs like
tree15, g18, guass18 and g40 with Nm=2, 4, 8 (Tables 3-5).
Though our algorithm allows for any number of machines with
different working and idle state power consumptions,
generally, existing algorithms on scheduling consider lesser
than 8 machines. So, we have shown here the results for 2, 4
and 8 machine systems so that they are easily compared with
the existing algorithms’ results.

The tree15 graph displayed in Figure 2 is a binary tree with all
communication and execution costs equalling unity. The g18
graph is shown in Figure 3. Though our algorithm allows for
different execution costs on different machines for the same
task, for the purpose of comparing our results with that of the
previous works, our algorithm was simulated on the same
program graphs which were used by Agrawal et al. [1,13].

The guass18 graph is displayed in Figure 4 with the specified
execution and communication costs. The g40 graph is shown in
Figure 5 with all communication and execution costs equalling
unity.
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Figure 3. Tree15Program Graph: All communication and execution
costs are unity.

Figure 4. G18 Program Graph: All communication costs equal unity.

Figure 5. Guass18 Program Graph: All communication and
execution costs are as specified.

Table 3. Makespan and energy comparison, with Nm=4, k=1.

Graph Active
state
energy

Idle state
energy

Total
energy
consumptio
n

Makespan Running
time (in
seconds)

tree15 15.0 17.0 32.0 8 0.147

g18 86.0 22.0 108.0 27 0.160

guass18 60.0 148.0 208.0 52 0.149

g40 160.0 24.0 184.0 46 0.173

Table 4. Makespan and energy comparison, with Nm=8, k=1.

Graph Active
state
energy

Idle state
energy

Total
energy
consumptio
n

Makespan Running
time (in
seconds)

tree15 15.0 41.0 56.0 7 2.382

g18 86.0 106.0 192.0 24 2.346

guass18 60.0 356.0 416.0 52 0.377

g40 160.0 88.0 248.0 31 9.236

Table 5. Makespan and energy comparison, with Nm=16, k=1.

Graph Active
state
energy

Idle state
energy

Total
energy
consumptio
n

Makespan Running
time (in
seconds)

tree15 15.0 78.0 93.0 5 4.281

g18 86.0 210.0 296.0 20 3.831

guass18 60.0 550.0 610.0 48 0.934

g40 160.0 103.0 263.0 24 9.842

Figure 6. g40 Program Graph: All communication and execution
costs are unity.

Figure 6 compares the total energy of the schedules produced
by the CA+GA algorithm proposed by Agrawal et al. [1] and
EEM scheduling that we have proposed. Clearly, EEM results
in better schedules in terms of energy on all the standard
graphs. Figure 7 is a comparison of the time taken by both
these algorithms to produce a near optimal schedule. The
exponential dependency of the CA+GA algorithm on both the
number of machines and the number of tasks results in huge
execution times whereas, EEM scheduling algorithm’s running
time does not have an exponential dependence on the number
of tasks to be scheduled. Since the number of machines is
constant, we could see an almost constant running time of
EEM algorithm on all the standard graphs that we tested our
algorithm on. Same is the case when Nm=4. Figure 8 shows the
comparison of the makespan of the final schedules produced
by CA+GA (i.e. in Figure 2) and EEM scheduling. Our
algorithm produces much better results on three of the four
graphs.

An analysis of the guass18 program graph makes it clear that
unlike other graphs, in guass18, we have nodes in higher levels
having greater number of dependent nodes than the ones at the
lower levels (i.e. Figure 4, node 11 has more number of
outgoing edges than node 5). Also, the higher transfer costs
associated, restricts the brute force logic from producing
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locally sub optimal parallel schedules which might result in
globally near optimal solution. To overcome this, we tried
modifying our algorithm so that, instead of considering nodes
level-wise for scheduling, it would rank all the nodes based on
the total number of nodes at the higher levels that are
dependent on them. It then splits the nodes into Nt/Nm sets,
each of which is sequentially scheduled. But doing that, we
failed to schedule parallel processes in the same level
efficiently, when we have higher ranked nodes in the higher
levels. Since, only nodes within a level can be parallelized and
we lose this parallelism by modifying the algorithm, the results
of the modified algorithm was not better than the proposed
algorithm. However, the small increase in makespan of the
schedule produced by the proposed EEM algorithm in the case
of guass18 graph is more than compensated by the huge
running time of the CA+GA algorithm (Figure 9) to find the
schedule which is only a bit better than our solution [1,14].

Figure 7. Energy comparison of existing and proposed algorithms
with Nm=8, k=1.

Figure 8. Running time comparison of existing and proposed
algorithms with Nm=8.

Figure 9. Makespan comparison of existing and proposed algorithms.

Figure 10. Energy consumption for graph g40.

Conclusion
As proposed, we have been successful in generating near
optimal energy-efficient and minimum makespan schedules for
tasks on heterogeneous distributed systems with varying power
consumptions and task execution times. From the simulation
results, it is clear that our algorithm runs extremely faster and
generates much better schedules compared to the existing
systems. When the execution time of tasks on different
machines vary, our algorithm concentrates on minimizing the
idle power consumption and hence the makespan, which in
turn reduces the total energy consumption (Figure 10) [15].
However, when more than one sub-schedule satisfy the
minimum time or energy criterion of the brute force logic, our
algorithm always chooses the first such sub-schedule that it
encountered, whereas choosing the other sub-schedules might
result in a better overall schedule. We could work on ranking
the equally good sub-schedules in each level so that the highest
ranked schedule would result in a better overall schedule.

Also, the other drawback of the algorithm on graphs like
guass18, as explained in Section III requires much deeper
analysis and understanding of the graphs by the algorithm.
Developing a generic algorithm which would dynamically
schedule different graphs differently so that, the algorithm
returns a near optimal solution on all types of graphs can be
seen as the possible next step.
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