Research Article

MONOGENEAN FAUNA OF DISTRICT SAHARANPUR, UTTAR PRADESH, PART-IX

Vivek Kumar

Department of Zoology, Vardhaman College, Bijnor- 246 701, Uttar Pradesh, India

Article History: Received 8th August 2013; Accepted on 12th October 2013: Published online 8th November 2013

ABSTRACT

Present communication deals with two new species of the genus Hamatopeduncularia Yamaguti, 1953, from freshwater fish Mystus seenghala (Sykes). The new species is characterized on the basis of difference in shape of accessory piece, shape of transverse bars, anchors and shape of vagina etc.

Key words: Monogeneans, Hamatopeduncularia, Hamatopeduncularia saharanpurensis, Hamatopeduncularia agrawali, Mystus seenghala.

INTRODUCTION

During the course of study of freshwater monogenean fauna of district Saharanpur, two specimen of Mystus seenghala (Sykes) were infected with species of genus Hamatopeduncularia Yamaguti, 1953. On detailed examination, it was found that the worms at disposal of the author were new to science, hence described as such.

MATERIAL AND METHODS

Fishes, for the present investigation, were collected from river Yamuna and local fish markets of district Saharanpur. They were brought to laboratory and identified. The identification of piscine hosts was made with the help of classical works of McNerny and Gerard (1958), Misra (1959), Srivastava (1980), Nelson (1984) and Day (1989). Monogeneans were collected by freezing technique of Mizelle (1936 and 1938).

Worms thus collected, were washed thoroughly, and fixed in hot 70% alcohol or 10% neutral Formaline. Study of chitinoid hard parts was made in temporary Glycerin mounts. Permanent mounts were also made after staining in Aceto alum carmine, dehydrating through ascending grades of Alcohol, clearing in Xylene, and mounting in Canada balsam. Camera lucida sketches were made both from temporary and permanent preparations. Besides this, morphological studies were made using Motic Microscope and Image analyzing system. All measurements were taken with the help of stage micrometer and ocularometer by method suggested by Mizelle (1936 and 1938), Gussev (1955), Malmberg (1957) and Singh (1959). The measurements were also compared with the measurement taken by Motic image analysis software 2000.

OBSERVATION

Hamatopeduncularia saharanpurensis n. sp. (Plate- I, Fig. 1-8 and Plate-II, Fig. 1-3)

The body of worm is stout, elongated, measuring 0.75-0.79 mm. Maximum width was recorded in testicular region, ranging from 0.12-0.13 mm. Prohaptor and opisthaptor are fairly set off from the body proper through a shallow constriction in the anterior and haptoral peduncle in the posterior regions, respectively. Head is divisible in two lobes and lodged with five pairs of head organs and two pairs of eyespots. Each head organ is provided with a separate duct extending posteriorly. Eyespots are well developed; posterior pair of eyespot is considerably larger than anterior pair on account of presence of large number of melanistic granules. Pharynx is spherical, muscular, measuring 0.062-0.065 mm
in diameter. Intestine is simple, bifurcate and crura end blindly.

Male reproductive system consists of a testis, seminal vesicle and male copulatory complex. Testis is oval, inter-caecal, equatorial and measures \(0.095-0.097\times0.051-0.054\) mm. Seminal vesicle is balloon shaped, located in pre-equatorial region of the body, measuring \(0.058-0.059\times0.034-0.035\) mm. Male copulatory complex consists of curved tubular cirrus and an accessory piece. The cirrus proper is double walled chitinoid structure, with bubble like base and pointed anterior end, measures \(0.035-0.038\) mm. The accessory piece of the cirrus is made up of two pieces. First piece is long rod like, having pointed tip which folds inward, measures \(0.048-0.049\) mm and second piece is ‘U’ shaped having one arm tilted at right angle, measures \(0.038-0.039\) mm.

Female reproductive system consists of an ovary, vagina, receptaculum seminis, and vitelline glands. Ovary is pre-equatorial, oval, measuring \(0.071-0.075\times0.032-0.034\) mm. Vagina is dextral, muscular, floral whorls like, having ridges internally, anterior to ovary, lies at the level of seminal vesicle, measures \(0.025-0.028\) mm, communicate with well developed receptaculum seminis with a tube. The receptaculum seminis is oval, located at the level of ovary, measures \(0.031-0.032\times0.025-0.026\) mm. Vitelline follicles are co-extensive with intestinal caeca.

Haptor is irregular in shape, bearing four pair of haptoral tentacles; measuring \(0.13-0.14\times0.17-0.18\) mm. Armature of haptor consists of two pairs of anchors, double transverse bar and marginal hooklets. Each dorsal anchor consists of long inner roots, slightly differentiated outer roots, shaft and recurved points, measures \(0.038-0.039\) mm. In the shaft region, each dorsal anchor is equipped with well developed sleeve sclerite. Dorsal transverse bar is straight rod like, having groove at margins, measures \(0.055-0.058\) mm. Each ventral anchor is with long inner root, non remarkable outer root, strong shaft and recurved points, measuring \(0.037-0.038\) mm. In the shaft region each anchor is protruded and equipped with sleeve sclerite. Ventral transverse bar is strong, well developed, rod like, measures \(0.041-0.043\) mm. Marginal hooklets are seven pairs, and each tentacle is with a hook. Each marginal hooklet is provided with sickle shaped blade, heel and handle, measuring \(0.011-0.013\) mm in length. Two pairs of haptoral glands are present.

PLATE I. *Hamatopeduncularia saharanpurensis* n.sp. Fig. 1. Whole mount, Fig. 2. Male copulatory complex, Fig. 3. Haptor. Fig. 4. Dorsal transverse bar, Fig. 5. Dorsal anchors, Fig. 6. Ventral transverse bar, Fig. 7. Ventral anchors and Fig. 8. Marginal hooklet.
PLATE II. *Hamatopeduncularia saharanpurensis* n. sp. Microphotograph (Fig.) 1. Haptor, Fig. 2. Male copulatory complex and Fig. 3. Vagina.
Table 1. Showing different species of genus *Hamatopeduncularia* Yamaguti, 1953 abstracted from different part of world.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parasite</th>
<th>Hosts</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H. arabica Paperna, 1977</td>
<td>Arius sp.</td>
<td>Porbandar (India)</td>
</tr>
<tr>
<td>2</td>
<td>H. arii Yamaguti, 1953</td>
<td>Arius falcarius</td>
<td>Hainan (China)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. leiocephaulus</td>
<td>Malindi (Kenya)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. maculatus</td>
<td>Guandong (China)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. thalassinus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. sinensis</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>H. australis Young, 1967</td>
<td>N. australis</td>
<td>Brisbane (Australia)</td>
</tr>
<tr>
<td>4</td>
<td>H. bagrae Hargis, 1955</td>
<td>Bagre marinus</td>
<td>Gulf of Mexico</td>
</tr>
<tr>
<td>5</td>
<td>H. batrachi Rastogi et al., 2005</td>
<td>Claristas batrachus</td>
<td>Meerut (India)</td>
</tr>
<tr>
<td>6</td>
<td>H. brisbenensis Young, 1967</td>
<td>Neoarius australis</td>
<td>Brisbane (Australia)</td>
</tr>
<tr>
<td>7</td>
<td>H. elegans Bychowsky and Nagibina, 1969</td>
<td>Arius falcarius</td>
<td>Yellow sea (China), Ungwama Bay (Kenya),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. macrocephalus</td>
<td>Straits of Malacca</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. maculatus</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>H. eliatica Paperna, 1965</td>
<td>Dascyllus marginatus</td>
<td>Red Sea</td>
</tr>
<tr>
<td>9</td>
<td>H. elongatum Lim, 1996</td>
<td>A. thalassinus</td>
<td>Straits of Malacca</td>
</tr>
<tr>
<td>10</td>
<td>H. heraldi Mizelle and Price, 1964</td>
<td>Zanculas canescens</td>
<td>South West Pacific</td>
</tr>
<tr>
<td>11</td>
<td>H. indicus Siddiqui and Kulkarni, 1983</td>
<td>A. jella</td>
<td>Kakinad (India)</td>
</tr>
<tr>
<td>12</td>
<td>H. isosimplex Lim, 1996</td>
<td>A. venosus</td>
<td>Matang (Perak)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. maculatus</td>
<td>Straits of Malacca</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. sagor</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>H. longicopulatrix Lim, 1996</td>
<td>A. venosus</td>
<td>Matang Perak</td>
</tr>
<tr>
<td>15</td>
<td>H. lucknowensis Agrawal and Sharma, 1988</td>
<td>Wallago attu</td>
<td>Lucknow (India)</td>
</tr>
<tr>
<td>16</td>
<td>H. major Kearn and Whittington, 1994</td>
<td>A. graffe</td>
<td>Brisbane (Australia)</td>
</tr>
<tr>
<td>17</td>
<td>H. malacensis Lim, 1996</td>
<td>A. maculatus</td>
<td>Matang Perak</td>
</tr>
<tr>
<td>18</td>
<td>H. malayanus Lim, 1996</td>
<td>A. caelatus</td>
<td>Matang Perak</td>
</tr>
<tr>
<td>19</td>
<td>H. manjungi Lim, 1996</td>
<td>A. thalassinus</td>
<td>Straits of Malacca</td>
</tr>
<tr>
<td>20</td>
<td>H. nagibinae Paperna, 1977</td>
<td>A. macrocephalus</td>
<td>Ungwama Bay (Kenya)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. thalassinus</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>H. orientalis Rastogi et al., 2005</td>
<td>Mystus tengara</td>
<td>Meerut (India)</td>
</tr>
<tr>
<td>22</td>
<td>H. paperna Lim, 1996</td>
<td>A. maculatus</td>
<td>Matang Perak</td>
</tr>
<tr>
<td>23</td>
<td>H. pearsoni Kearn and Whittington, 1994</td>
<td>A. graffe</td>
<td>Brisbane (Australia)</td>
</tr>
<tr>
<td>24</td>
<td>H. pulchra Bychowsky and Nagibina, 1969</td>
<td>A. maculatus</td>
<td>Hainan and Yellow sea (China)</td>
</tr>
<tr>
<td>25</td>
<td>H. ritai Rastogi et al., 2005</td>
<td>Mystus tengara</td>
<td>Meerut (India)</td>
</tr>
<tr>
<td>26</td>
<td>H. simplex Bychowsky and Nagibina, 1969</td>
<td>A. maculatus</td>
<td>Hainan and Yellow Sea, Guandong (China),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. falcarius</td>
<td>Matang Perak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. sinensis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Osteogeneious militaris</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>H. sohanni Tewari and Agarwal, 1986</td>
<td>Mystus seenghala</td>
<td>Meerut (India)</td>
</tr>
<tr>
<td>28</td>
<td>H. spiralis Kearn and Whittington, 1994</td>
<td>A. graffe</td>
<td>Brisbane (Australia)</td>
</tr>
<tr>
<td>29</td>
<td>H. thalissini Bychowsky and Nagibina, 1969</td>
<td>A. thalassinus</td>
<td>South China Sea, (China), Porbandar (India),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arius sp.</td>
<td>Porbandar (India), Straits of Malacca</td>
</tr>
<tr>
<td>30</td>
<td>H. theraponi Karyakarte and Das, 1972</td>
<td>Therapon theraps</td>
<td>Ratangiri (India)</td>
</tr>
<tr>
<td>31</td>
<td>H. venosus Lim, 1996</td>
<td>A. venosus</td>
<td>Matang Perak</td>
</tr>
<tr>
<td>32</td>
<td>H. wallagonius Singh et al., 1995</td>
<td>Wallago attu</td>
<td>Meerut (India)</td>
</tr>
<tr>
<td>33</td>
<td>H. yogendrai Pandey and Mehta, 1986</td>
<td>Wallago attu</td>
<td>Meerut (India)</td>
</tr>
</tbody>
</table>
DISCUSSION

Genus *Hamatopeduncularia* was established by Yamaguti (1953) with *H. arii* as type species. To the best of my knowledge following species are known under genus *Hamatopeduncularia* appended in the tabular form in table 1.

However, Tripathi (1959) transferred *H. bagrae* Hargis, 1955 to the genus *Hargitrema* on the basis of morphological features. This transfer were agreed by subsequent workers including Yamguti (1963); Bychowsky and Nagibina (1969); Kearn and Whittington (1994), Singh *et al.* (1995) and Lim (1996). Tripathi (1959) also proposed to synonymies the genus *Hamatopeduncularia* Yamaguti, 1953 with *Ancyrocephalus* but this synonymy was disagreed and reversed by Yamaguti (1963), with which I also agree.

Besides this, Bychowsky and Nagibina (1969) transferred *H. australis* Young, 1967 to the genus *Chauhanellus* Bychowsky and Nagibina, 1969; *H. heraldi* Mizelle and Price, 1964 to the genus *Pseudohaliotrema* and *H. eliatica* Paperna, 1965 to the genus *Heliotrema*. Tripathi, 1959, retaining species valid in all three cases. Kearn and Whittington (1994) synonymised *H. indicus* Siddiqui and Kulkarni, 1983 with *H. arii* Yamaguti, 1953. Thus, the valid species under the genus *Hamatopeduncularia* Yamaguti, 1953 are

1. *H. arabica* Paperna, 1977
2. *H. arii* Yamaguti, 1953
4. *H. battrachi* Rastogi *et al.*, 2005
5. *H. brisbenensis* Young, 1967
7. *H. elongatum* Lim, 1996
8. *H. isosimplex* Lim, 1996
10. *H. lucknowensis* Agrawal and Sharma, 1988
15. *H. nagibiniae* Paperna, 1977
17. *H. papernai* Lim, 1996
20. *H. ritai* Rastogi *et al.*, 2005

22. *H. sohani* Tewari and Agarwal, 1986
23. *H. spiralis* Kearn and Whittington, 1994
24. *H. thalissini* Bychowsky and Nagibina, 1969
25. *H. theraponi* Karyakarte and Das, 1972
27. *H. wallagonius* Singh *et al.*, 1995
28. *H. yogendrai* Pandey and Mehta, 1986

The present form differs from all the known species of the genus *Hamatopeduncularia* in having different shaped of accessory piece, shape of transverse bars, anchors and shape of vagina, therefore, it is described a new species *viz.* *Hamatopeduncularia saharanpurensis* n.sp., named on the region collected from.

Hamatopeduncularia agrawali n.sp. (Plate III, Fig. 1-8 and Plate IV, Microphotograph 1-2)

The body of worm is stout, elongated, measuring 0.45-0.48 mm. Maximum width was recorded in seminal vesicle region, ranging from 0.057-0.058 mm. Prohaptor and opisthaptor are fairly set off from the body proper through a shallow constriction in the anterior and long haptoral peduncle in the posterior regions, respectively. Head is divisible in two lobes which are further divided into three lobes. Head is lodged with six pairs of head organs and two pairs of eyespots. Each head organ is provided with a separate duct extending posteriorly. Eyespots are well developed, posterior pair of eyespot is considerably larger than anterior pair on account of presence of large number of melanistic granules. Pharynx is oval, muscular, measuring 0.026-0.028 x 0.024-0.026 mm. Intestine is simple, bifurcate and crura end blindly.

Male reproductive system consists of a testis, vas deferens, seminal vesicle and male copulatory complex. Testis is elongate-oval, inter-caecal, equatorial and measures 0.051-0.052 x 0.021-0.022 mm. From the anterior border of testis, a fine vas deferens arises, extends anteriorly, forms loop around right intestinal limb, and dilates to form seminal vesicle. Seminal vesicle is balloon shaped, located in pre-equatorial region of the body at level of cirrus proper, measuring 0.027-0.028 x 0.015-0.016 mm. Male copulatory complex consists of tubular cirrus and an accessory piece. The cirrus proper is double walled chitinoid structure, with wide bubble like base, measures 0.025-0.026 mm. The accessory piece of the cirrus is made up of three pieces. First piece is

*Corresponding author e-mail: s_vivekkumar1979@rediffmail.com
'V' shaped, having pointed tip, measures 0.021-0.022 mm, second piece is stick like having broader anterior end, fits into first accessory piece, measures 0.016-0.017 mm and third piece is slightly 'Δ' in shape, measures 0.024-0.026 mm.

Female reproductive system consists of an ovary, vagina, receptaculum seminis, and vitelline glands. Ovary is pre-equatorial, pre-testicular, elongated-oval, measuring 0.048-0.049 x 0.017-0.018 mm. Vagina is dextral, muscular, funnel shaped, measures 0.004-0.005 mm, communicate with well developed receptaculum seminis with a narrow tube. The receptaculum seminis is oval, located at the level of ovary, measures 0.023-0.024 x 0.014-0.015 mm. Vitelline follicles are co-extensive with intestinal caeca.

Haptor is irregular in shape, bearing of haptoral tentacles, measuring 0.12-0.13 x 0.11-0.12 mm. Armature of haptor consists of two pairs of anchors, double transverse bar and marginal hooklets. Each dorsal anchor consists of long inner roots, slightly differentiated outer roots, shaft and recurred points, measures 0.041-0.042 mm. The inner root is surrounded by a ring pad. At distal extremity, the shaft bears a clamping formation (spine like) terminating near the middle of the anchor point. Dorsal transverse bar is straight rod like, having condyole at extremities at margins, measures 0.051-0.052 mm. Each ventral anchor is with long inner root, non remarkable outer root, strong shaft and recurred points, measuring 0.068-0.069 mm. Ventral transverse bar is strong, well developed, curved, having pendulum like posterior protrusion at middle, measures 0.054-0.055 mm. Marginal hooklets are seven pairs. Each marginal hooklet is provided with sickle shaped blade, heel and handle, measuring 0.009-0.012 mm in length. Three pairs of haptoral glands are present.

PLATE III. Hamatopeduncularia agrawali n.sp. Fig. 1. Whole mount. Fig. 2. Male copulatory complex. Fig. 3. Haptor. Fig. 4. Dorsal transverse bar. Fig. 5. Dorsal anchors. Fig. 6. Ventral transverse bar. Fig. 7. Ventral anchors. Fig. 8. Marginal hooklets.
PLATE IV *Hamatopeduncularia agrawali* n.sp Fig. 1. Haptor. Microphotograph and Fig. 2. Male copulatory complex.
CONCLUSIONS

The present form belongs to the genus *Hamatopeduncularia* Yamaguti, 1953 and closer to *H. batrachi* Rastogi *et al.*, 2005 in following features:

1. Having ring pads at the base of anchors.
2. Having clumping formation on the inner side of shaft of anchor.
3. Having similar shape of cirrus proper.

However, present form differs from *H. batrachi* Rastogi *et al.*, 2005 in following features:

1. Different shape of accessory piece.
2. Different no. of head organs (sixteen pairs in *H. batrachi* Rastogi *et al.*, 2005 but six pairs in present form).
3. Shape of transverse bars.
4. Shape of ventral anchors.

Therefore, it is described as a new species viz. *H. agrawali* n.sp., named in honour of Prof. N. Agrawal for the valuable contribution made by her in this field.

ACKNOWLEDGEMENT

The author is thankful to the Head, department of Zoology, CCS University, Meerut for providing the necessary facilities and Prof. H S Singh for his valuable guidance.

CONFLICT OF INTEREST

The author declares that there is no conflict of interest associated with this article.

REFERENCES

Mizelle, J.D. and Price, C.E., 1964. Studies on monogenetic trematodes. XXV. Six new species of Ancyrocephalinae from the gills of *Zanclus canescens* (Linnaeus) with a key to

Corresponding author e-mail: s_vivekkumar1979@rediffmail.com

