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Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder that affects 1% of the general 
population over the age of 60 [1]. PD is characterized by 
progressive dopamine (DA) neuron degeneration in the 
pars compacta of the substantia nigra (SN) plus Lewy body 
formation in affected brain areas [2]. The progressive DA neuron 
degeneration leads to decreased DA content in SN, contributing 
to onset of PD symptoms. So far PD is still an incurable 
human disorder and L-DOPA replenishing therapy is the only 
treatment, which can transiently alleviate PD symptoms, with 
no therapeutic effects against DA neurons demise in PD patient 
brains. 

Although the pathogenesis of PD is still unclear, increased 
oxidative stress in DA neurons is commonly recognized to be 
the pathological factor for DA neuron degeneration in PD [3]. 
The DA is a neurotransmitter for DA neurons in SN. However 
DA is unstable and DA can undergo oxidation to generate small 
molecular reactive oxygen species (ROS) and highly reactive 
DA quinones (DAQ) [4]. The endogenous DA is supposed to be 
the culprit for increased oxidative stress in DA neurons [5-7]. 
The DA toxicity is identified in human mesencephalic neuron-
derived cells [8]. The endogenous DA in DA cells can inhibit 
proteasome activity, leading to DA neurons vulnerability [7]. 
Achievements from in vivo animal model studies also implicate 
the toxic feature of endogenous DA in DA neurons related to 
DA neuron degeneration [9-11]. A recent paper demonstrates 
that DA oxidation mediates mitochondrial and lysosomal 
dysfunction and DA oxidation represents an important link 
between mitochondrial and lysosomal dysfunction in PD 
pathogenesis [12]. The small molecular ROS is supposed 
to increased oxidative stress in DA neurons via reversible 
oxidative modifications. However, DAQ is highly reactive and 
can irreversibly and covalently conjugate with sulfhydryl groups 
of cysteine residues of proteins, contributing to misfolding, 
inactivation and aggregation of DA modified proteins [13-16]. 
The DAQ modified proteins are found to be accumulated in the 
SN of aged rats and is correlated with DA induced toxicity in 
human DA neurons [17]. The DAQ can induce mitochondria 
impairment and inhibit ubiquitin proteasome system (UPS) 
[13,18,19]. DA can induce irreversible proteasome inhibition via 
DAQ, rather than through small ROS [20]. The PD associated 
proteins ubiquitin carboxy-terminal hydrolase L1 and DJ-1 can 
be covalently modified by DAQ in both brain mitochondrial 
preparations and SH-SY5Y cells [13]. It is found that a group of 
rat brain mitochondrial proteins can be covalently modified by 
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DAQ, including chaperonin, ubiquinol-cytochrome c reductase 
core protein 1, glucose regulated protein 75 / mitochondrial 
HSP70/mortalin, mitofilin, and mitochondrial creatine kinase 
[13]. The DAQ induced conjugation can be supported by findings 
that DAQ can form polydopamine, long-chain molecular 
building blocks, via covalent reactions, leading to formation of 
thin, surface-adherent polydopamine films onto a wide range of 
inorganic and organic materials [21]. Therefore DAQ induced 
functional protein misfolding, inactivation and aggregation 
as well as subsequent UPS inhibition and mitochondria 
impairment significantly account for DA dependent DA neuron 
degeneration in PD. 

The DA induced toxicity can be iron related. Iron accumulation 
is detected in the SN region of both living and post-mortem PD 
patient brains [22,23]. Recent findings show that iron species 
can mediate DA oxidation to produce deleterious ROS and 
DAQ, leading to DA neuron vulnerability [24]. Free iron ions 
can form complexes with DA to induce DA oxidation and 
toxic by-products generation [24]. Deferoxamine (DFO), an 
iron chelator, can inhibit free iron mediated DA oxidation and 
subsequent cytotoxicity via abrogation of iron-DA complex 
formation [24]. Iron chelators with blood brain barrier (BBB) 
penetrating capacity are supposed to protect against iron related 
DA neuron degeneration in PD. The DA induced toxicity is also 
implicated in genetic factors induced DA neuron degeneration. 
The toxicity of α-syn protein can be DA dependent [25-28]. The 
auto-oxidation of endogenous DA aggravates non-apoptotic DA 
cell death induced by overexpression of human mutant A53T 
α-syn [25]. DAQ can conjugate with α-syn to form unstructured 
adducts [29]. The conjugation of DAQ with α-syn can slow the 
conversion of protofibrils to fibrils, leading to accumulation of 
toxic α-syn protofibrils [30]. Furthermore PINK1 mutations 
induced DA neuron vulnerability is also DA dependent [31]. 
The DA dependent toxicity of mutant PINK1 to DA neurons is 
supported by observations in PINK1 knockout mice [32,33]. It 
is found that the extra-mitochondrial PINK1 can regulate TH 
expression and DA content in DA neurons in a PINK1 kinase 
activity dependent manner [31]. Mutations of PINK1 will 
significantly increase levels of TH and DA, contributing to DA 
neurons vulnerability to challenges [31]. 

The DA related toxicity can be alleviated by ROS scavenges, 
especially those with DAQ detoxifying capacity. The GSH is 
an important endogenous ROS scavenger and DAQ detoxifier 
[4,34]. In the absence of metal ions, GSH can inhibit DA auto-
oxidation and tyrosine catalyzed DA oxidation [4]. GSH can 
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provide its sulfhydryl group to react with and detoxify reactive 
DAQ [4]. Data from post-mortem studies shows the increased 
GSH-DA conjugates in PD brains compared to normal controls, 
suggesting pathological roles of DAQ and protective conjugation 
of DAQ by GSH in PD brains [35]. Furthermore post-mortem 
studies also show that the GSH content in SN in early onset 
PD is significantly decreased by ~50% when compared to 
aged controls [36]. These findings imply that decreased GSH 
level in DA neurons can be a pathological factor to DA neuron 
vulnerability [36]. Future studies searching for new and potent 
DAQ detoxification agents with BBB penetrating and iron ions 
chelating capacities should add to our therapies against DA 
neuron degeneration in PD. 
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