herapeutic reintubation for extubation failure due to upper airway obstruction in ventilated newborn infants

Author(s): SN Singh, RK Choudhary, Anita Singh, Mala Kumar

Vol. 15, No. 2 (2011-07 - 2011-12)

SN Singh, RK Choudhary, Anita Singh, Mala Kumar

Department of Pediatrics, Chhatrapati Shahuji Maharaj Medical University, Lucknow-226003, Uttar Pradesh.

Abstract

Postextubation upper airway obstruction can lead to early extubation failure in ventilated newborn infants. Treatment with steroid, nebulized epinephrine and non-invasive respira-tory assistance may not be effective. Reintubation and ventilation for respiratory failure with subsequent extubation attempts or surgical interventions are often employed with vari-able results. A series of 29 infants with failed extubation due to upper airway obstruction, treated by therapeutic reintubation, without ventilation is presented. The therapy was suc-cessful in 24 patients with a median reintubation period of 3.5 days. The important element in achieving success is to choose a smaller size tube which gives an adequate airway.

Keywords: Therapeutic reintubation (TR); Extubation failure; Upper airway obstruction (UAO) Accepted November 17 2011

Introduction

Use of endotracheal tube (ET) to provide ventilation can lead to upper airway mucosal injury, especially after prolonged, traumatic or multiple intubations [1]. This causes upper airway obstruction (UAO) after extubation in 31.1% of high-risk infants, manifesting commonly as in-spiratory dyspnoea and stridor [2]. It may lead to respira-tory insufficiency and failure of extubation. Systemic steroids [3], nebulized epinephrine [4], and non-invasive respiratory assistance [5] are being used to treat UAO without proven efficacy. Often, patients require reintuba-tion and ventilation for respiratory failure with subsequent extubation attempt with modest success. Failing these treatments, surgical interventions [6] are often advised which has poor acceptance, variable results and complica-tions. Prolonged endotracheal intubation in infants and children for conditions which would otherwise need tra-cheostomy has been tried with encouraging results [7], but same has not been evaluated much in newborn.

We reviewed ventilated newborn infants in whom extuba-tion had failed as a result of UAO, treated by reintubation with smaller ET without ventilation.

Material and Methods

This was a retrospective case study from level III neonatal unit over 2 years. The neonates ventilated for \leq 3 days, having extubation failure (within 24 hrs) due to UAO and treated by reintubation, without ventilation were re-viewed. All cases had been extubated electively as per unit protocol, which were (i) Improving primary lung dis-ease; (ii) Free of any complications and sedation; (iii) Hemodynamically stable; (iv) Hematocrit >30% with normal blood sugar and electrolytes; and (v) Acceptable blood gas at minimal ventilator settings. Aminophylline was used in preterm <34 weeks. Dexamethasone, 0.25mg/kg/dose IV were used in periextubation period in cases of multiple intubations (\leq 3) or prolonged ventilation (\leq 7 days) and continued to a total of 4 doses, 8 hours apart. Nebulization with L- epinephrine (1:1000 solution 0.5 ml in 1.5 ml normal saline), 4 hourly to a maximum of 4 doses was used in patients having stridor and or su-prasternal/ upper chest retraction after extubation. Babies weighing < 1.5kg were extubated to nasal CPAP, while \leq 1.5kg were extubated to head box O2 directly.

Extubation failure or decision for reintubation was taken when Downe's score was ≤6 along with PaCO2 > 60 mmHg and arterial blood pH < 7.25, and/ or PaO2 < 50 mmHg or SpO2 < 88% on FiO2 > 0.5. UAO was cited as cause of extubation failure if patient had stridor and/ or inspiratory dyspnea, which apparently improved just after reintubation, with no other identifiable cause. Such patients with UAO as a cause of extubation failure were reintubated (orotracheal) with a smaller size ET (2.5 mm in infants weighing less than 2000 g and 3.0 mm in those weighing 2000 g or more), and put under head box O2, humidified by bubble humidifier. The O2 concentra-tion was measured at the head box using oxygen analyser. The tube was changed only when and if signs of obstruc-tion occurred. Initially after 2-3 days and then subsequently at same intervals, extubation was reattempted when following criteria were present (i) hemodynamically stable and alert baby; (ii) mild or no chest retraction; (iii) acceptable blood gas on FiO2 < 0.4; (iv) a loose fitting tube, evidence of this was shown by an obvious cough / or hissing sound around the tube on aspiration or on agita-tion. Although it was a less common sign, but quite char-acteristic when present. Every attempt of extubation was preceded and followed by IV dexamethasone, and nebu-lised epinephrine (4 doses, 4 hourly) was given just after extubation. After extubation, patients were put under head box O2 with gradual weaning. If extubation failure re-curred, reintubation was performed with extubation at-tempt later using similar criteria.

Patient's detail, including duration of intubations during ventilation and therapeutic reintubation (TR) were re-corded. Finally the outcome of TR was studied. It was considered successful when there was no need of reintu-bation up to seven days after extubation with declining O2 demand.

Results

Twenty nine infants (17 term, 12 preterm) were treated by TR. Major indications for ventilation were pneumonia, hyaline membrane disease, meconium aspiration syn-drome, and apnoea.

Background variables of patients are shown in table 1. Twenty one patients had received dexamethasone before first elective extubation attempt from ventilator and all patients had 2 or more doses of dexamethasone and epi-nephrine nebulization prior to reintubation trial. TR was successful in 24 patients with a median (IQ range) reintu-bation period of 3.5 days (2-20). Seventeen patients were extubated with first attempt and twenty c ould be extu-bated within 7 days.

Table 1 Background variables and Results of patients received therapeutic reintubation

Variables	Therapeutic reintubation		
	Successful n = 24	Unsuccessful n = 5	All Patients n = 29
Weight at admission (g)			
Median (range)	2115 (900 - 3680)	1400 (940 - 2453)	1950 (900 - 3680)
up to 1500	5	3	8
1500 - 2500	11	2	13
> 2500	8	0	8
No of Intubations			
(Prior to TR)	the little statement of		
Median (range)	3 (2 - 7)	5 (4 - 7)	3 (2 - 7)
Prior Dexamethasone use	2		120
2 doses	8	0	8
4 doses	14	2 3	16
> 4 doses	2	3	5
No of extubation failure			
(Prior to TR)			
Median (range)	2 (1 - 3)	3 (2-3)	2(1-3)
Period of intubation*			
(Prior to TR) (days)			
Median (range)	7 (3 – 25)	21 (8 - 27)	8 (3 - 27)
Up to 7	13	0	13
8-14	8 3	1	9 7
>14	3	4	7
Age at start of TR (days)			
Median (range)	22 (4-48)	21 (12-35)	22 (4 - 48)
Duration of TR* (days)			
Median (range)	3.5 (2 - 20)	7 (3 – 32)	5 (2 - 32)
up to 3	12	1	13
4-6		1	9
7-14	8 2 2	1	3
> 14	2	2	3 4

*The period with intubations was considered a day if it lasted for > 12 hr.

TR was unsuccessful in 5 patients, 3 left against advice within 7 day of trial and 2 patients who had prior duration of intubation, 21 and 27 days, underwent tracheostomy after a 32 and 26 days trial. Three patients (all failed) needed ventilation for a brief (<12 hr) while on TR inter-vention. Laryngoscopy could be performed in 3 patients having multiple extubation failures. Subglottic stenosis due to granulation was noticed in 2, both underwent tra-cheostomy, and glottic edema in 1, recovered. We did not find any complication related to TR in form of pulmonary infection, accidental extubation, aspiration or stridor by the time of discharge.

Discussion

There is no consensus about the optimum management of extubation failure cases due to postextubation UAO. We found therapeutic reintubation to be successful in 24 of 29 cases, after a short reintubation period of median 3.5 days. Hoeve, et al [8] have reported a success rate of 95% in a series of 23 preterm infants, with a longer mean reintubation period of 17 days. Most of the patients in our series had received 4 or more doses of dexamethasone and nebulised epinephrine prior to therapeutic reintubation up to 2 weeks. Half of the successful patients in our series could be extubated within 3 days and another one third within 4-6 days of intervention. Probably these patients had less severe injuries in form of edema, superficial le-sions/ ulcer which healed even with ET (of smaller size) in place. Thus it seems reasonable to attempt a first extu-bation after 2-3 days in whom initial intubation lasted < 2 weeks.

The success rate in 7 patients with initial duration of intu-bation > 14 days was only 43% with a median reintuba-tion period of 10 days. These patients probably had de-veloped more severe airway injury in form of granulation or scaring. Two of the failed patients demonstrated granu-lation in subglottic region and underwent tracheostomy after 26 and 32 days of reintubation trial. Patients with granulation required longer period of reintubation trial (mean 27)

days) with lesser success rate (91%) in Hoeve, et al. series (8). Thus in resource limited settings, it may be justified to have a trial of reintubation for initial 1-2 weeks even if laryngobronchoscopy is not possible (as happened in most of our cases), however, it may be cru-cial at this stage to assist a decision whether to continue intubation or perform surgical intervention.

Six patients were continued to have reintubation trial be-yond 7 days. In fact these were some of the initial patients in whom TR was tried first, who had multiple extubation failures due to UAO, refused for tracheostomy and further ventilation with no option left. Interestingly it was ob-served that just after reintubation alone, there was dra-matic improvement in breathing pattern and retraction. Four of them could be finally extubated after a reintuba-tion trial of 10-20 days. Other 2 patients kept on failing and finally underwent tracheostomy, which could be only possible at day 26 and 32 of reintubation.

Tracheostomy in young infants still suffers. Both of our patients had several emergency visits due to complica-tions. Neither could be decanulated even after 8 months (died) and 12 months.

Some of the criteria of extubation from TR trial seems to be little subjective but ensured with some degree of certainty an uneventful extubation. Since the airway was already compromised in patients, we used smaller size ET to have a loose fit and at same time to provide a secured and quite adequate airway. This is supported by previous observation of having lesser rate of laryngotracheal steno-sis in neonates with use of smaller tube size [9].

In conclusion, therapeutic reintubation is a useful treat-ment in newborn infants having extubation failure due to upper airway obstruction following mechanical ventila-tion, who have also failed to usual treatment with dexa-methasone and nebulised epinephrine. It should be con-sidered before surgical options; however prospective study needs to be done.

References

- 1. Emran MA, Gerber ME, Arensman S. Surgical man-agement of the airway. In: Goldsmith JP, Karotkin EH, editor(s). Assisted Ventilation of the Neonate, 4th ed. Philadelphia: WB Saunders; 2003. p. 379-394.
- 2. Kolatat T, Aunganon K, Yosthiem P. Airway complica-tions in neonates who received mechanical ventilation. J Med Assoc Thai 2002 Aug; 85 suppl 2; S 455-462.
- 3. Markovitz BP, Randolph AG, Khemani RG. Corticos-teroid for prevention and treatment of postextubation stridor in neonates, children and adults. Cochrane Da-tabase Syst Rev. 2009 Jul 8; (3): CD001000
- 4. Davies MW, Davis PG. Nebulized racemic epinephrine for extubation of newborn infants. Cochrane Database Syst Rev. 2002; (1): CD000506
- 5. Wormald R, Naude A, Rowley H. Non-invasive venti-lation in children with upper airway obstruction. Int J Pediatr Otorhinolaryngol 2009 Apr; 73 (4): 551-554.
- 6. Sisk EA, Kim TB, Schumacher R, Dechert R, Driver L, Ramsey AM, et al. Tracheostomy in very low birth weight neonates. Laryngoscope 2006 June; 116 (6): 928-933.
- 7. Allen TH, Steven IM. Prolonged Endotracheal Intuba-tion in infants and children. Brit J Anaesth 1965; 37: 566-573.
- 8. Hoeve LJ, Eskici O, Verwoerd CDA. Therapeutic rein-tubation for Post-intubation Laryngotracheal injury in preterm infants. Int J Pediatr Otorhinolaryngl 1995; 31: 7-13.
- 9. Contencin P, Narcy P. Size of endotracheal tube and neonatal acquired subglottic stenosis. Study Group for Neonatology and Pediatric Emergencies in the Persian Area. Arch Otolarygol Head Neck Surg 1993 Aug: <u>119 (8): 815-819.</u>

Correspondence: <u>SN Singh</u> Department of Pediatrics Chhatrapati Shahuji Maharaj Medical University Lucknow 226003 Uttar Pradesh, India