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Abstract

This research has evaluated the fractal dimensions of erythrocytes with different morphological
characteristics. Predictive function based on fractal dimensions of erythrocytes was constructed to use it
in erythrocytes classification. Discriminant analysis was used in the linear combination of computed
fractal dimensions of different categories of erythrocytes. Three types of fractal dimensions were
calculated for three groups of erythrocytes normal (erythrocyte, echinocyte and sickle cells). There was a
significant difference between the fractal dimensions of the three groups. The computed fractal
dimensions were used to build the predictive function. The predictive function was highly sensitive and
specific in erythrocytes classification. The suggested analytical method may help in the transformation
of blood smear observation to a fully automated process. Hence it can reduce the errors and improve the
accuracy of such medical diagnosis methods.
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Introduction
The applicability of fractal geometry to further understanding
of diverse phenomena has proliferated since Benoit
Mandelbrot’s seminal work in the 1970s. The works of
Mandelbrot and Nottale inspired the development of fractal
physics [1]. Fractals are a rough, complex geometric shape that
can be subdivided into parts. Fractal geometric analysis is used
in quantification and discrimination between different types of
fractal objects. The fractals can be described using fractal
measure (K) and fractal dimension (FD) [2-9]. Fractal
dimension measures the degree of irregularity over multiple
scales. It is a very often noninteger and it determines the
difference between the fractal and Euclidean objects [8,10,11].

There are different methods to calculate FD such as walking
divider method, box counting, and fractional Brownian motion
[12]. Box-counting is the most straightforward method
algorithm for computing FD of 1D and 2D objects [13-15]. It
determines the fractal dimension of black and white digitized
images of fractals. It works by covering fractal (its image) with
boxes (squares) and then evaluating how many boxes are
needed to cover fractal completely. Repeating this
measurement with different sizes of boxes will result into the
logarithmical function of box size (x-axis) and a number of
boxes needed to cover fractal (y-axis). The slope of this
function is referred to as the box dimension. Box dimension is
taken as an appropriate approximation of fractal dimension
[5,16].

Fractal analysis is commonly used in physics, image
processing, and medical sciences [17]. Cancer research and
medical images analysis are such examples for which fractal
analysis has proved its utility [18-21]. The fractal-based
techniques have been applied in many areas of digital image
processing such as image segmentation, image analysis, image
synthesis, computer graphics, and texture coding [22,23].
Based on the fractal theory, image context can be constructed
by a set of model parameters which require fewer bits to
describe than original image [5,24].

This research is aimed at calculating the different type of FD
for erythrocytes in normal and abnormal states. Discriminant
analysis using all measured parameters will be done. Predictor
function will be extracted form discriminant analysis and will
be evaluated to be used in erythrocytes classification.

Materials and Methods

Sample collection and preparation
Blood smear slides were collected from different medical
laboratories. The slides were classified according to the
erythrocytes abnormalities into three main groups: group 1:
normal erythrocytes and were used as a control, group 2:
echinocyte and group 3: sickle cells. One hundred slides from
different volunteers were collected for each group. Thin blood
smears were chosen for all groups since cell morphology and
features were needed to be better preserved. Briefly, thin blood
films were prepared by placing a drop of blood into the center
of a slide and spread with the corner of another slide. By this
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procedure, there was a region on the glass slide where the
erythrocytes were homogeneously spread. The zone at which
erythrocytes stop overlapping was chosen as the working area
for microscopic analysis. All slides were left to air dry. In order
to obtain good staining and presentation of cellular detail
fixation with methanol was achieved. Increasing of the contrast
of the blood smears was done by staining by Giemsa dilution.
Ten shots were taken from a working area for each slide. The
images were saved in TIFF format which is the best for post-
processing as images were not compressed.

Imaging acquisition and images preprocessing
ImageJ2 open source software was used in image
preprocessing [14]. The imaging system consisted of the
compound light microscope attached to eyepiece camera. The
eyepiece camera was connected to PC through USB. This
system was enabled to capture the images directly from blood
smear slides fixed on the stage of the microscope. All images
were taken with magnification 40X and under the same
conditions of illumination and resolution. All images were
processed and analysed by Microscopic images were generated
in RGB color format which is difficult to be segmented [25].
All images were converted to 8-bit grayscale. Then auto-
correction of the brightness/contrast was done. This
optimization was done based on the analysis of the image’s
histogram. The optimization was accomplished by allowing to
some pixels in the image to be saturated to become black or
white. Feature extraction and separation of images contents
from the background and each other were done by image
segmentation. Pixel unit scale was chosen to set all
measurements. Optical density calibrated unit was chosen for
peak evaluation and optical histogram.

Fractal dimension
HarFA open source software (Institute of Physical and Applied
Chemistry, Brno University of Technology, Czech Republic)
was used to perform factual analysis [26]. FD was measured by
the box counting method. Erythrocytes image was covered
with a grid, then counting of how many boxes cover a part of
the image. The same procedure was done by using a smaller
grid with a smaller box. Repeating this producer with a smaller
and smaller grid and boxes, it ended up more accurately
capturing the fine structure of the erythrocytes. FD was
calculated as the gradient of the relationship of logN (Y-axis)
against the value of log r (X-axis) [27].

FD=log (N)/log (r) → 1

Where N is the number of boxes that cover the pattern and r is
the magnification or the inverse of the box size. In HarFA a
modification of traditional box counting enabled to compute
three fractal dimensions FDBW, FDBBW, and FDWBW.
FDBW is the fractal dimension which computes the surfaces
perimeter of cells. FDBBW is the fractal dimension which
computes the black border. FDWBW is the fractal demission
which computes the white background. The three types of FD
were used to build a discriminant model [28].

Statistical analysis
Form each image at least 50 erythrocytes were analysed. All
the parameters were presented as mean ± SD. Comparing
means was done by One-Way ANOVA. The covariance
equality was evaluated by Box’s test. The statistical
significance was considered as p˂0.01. FDBW, FDBBW, and
FDWBW were used as a predictor variable to build a
discriminant model [29]. The proposed discriminant analysis
formed from the composition of canonical discriminant
functions of a linear combination of independent predictor
variables. Predicator functions (PF) were built by the
coefficients of predictor variables which were the Fisher linear
functions [29]. Casewise testing was performed to check the
validity of PF. This was done by substitution of the predictor
variables in PF. The largest PF indicates the group to which the
erythrocyte was belonged to. IBM SPSS 23 was used to
perform statistical analysis.

Results and Discussion
Figure 1 shows the images preprocessing and fractal analysis
of erythrocytes. The fractal dimensions of the three groups are
listed in Table 1. Also, Table 1 shows the results of ANOVA
for means comparisons. It is clear that there is a significant
difference between FDBW of normal group and the other two
groups.

Figure 1. Fractal analysis panel.

Table 1. Fractal dimensions of erythrocytes groups.

Fractal
dimension

Normal Echinocyte Sickle cell

FDBW 1.2997 ± 0.00705 1.4976 ± 0.02258 1.1015 ± 0.00702

FDBBW 1.4007 ± 0.01114 1.5076 ± 0.03135 1.1996 ± 0.00922
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FDWBW 1.9008 ± 0.01414 1.9785 ± 0.03190 1.9892 ± 0.00787

*Data are represented as mean ± standard deviation **p˂0.001

The difference between FDBBW of normal group and the
sickle cell group was significant, and no difference was
observed for the other group. No significant difference was
found for FDWBW of normal and the other two groups.
FDBW of echinocyte was 1.53 and higher than normal. In
contrast, FDBW of sickle cells was 1.1 and lower than normal.
The two canonical discriminant functions are shown in Table 2.
Box’s test for covariance equality was significant (P<0.001).
The two discriminant functions are statistically significant
(P<0.001). In consequence, according to the three groups of
erythrocytes, fractal dimensions well-defined groups. A high
value of the canonical correlation in the first (0.99) and second
(0.9) discriminant functions indicate a high relationship
between the group membership and discriminant function
values. The bidimension space given by the two canonical
discriminant functions is plotted in Figure 2. It shows the
results correctly classified, indicating that 100% of the
erythrocytes were correctly identified normal, 100%
Echinocyte and 100% Sickle cell. The correlations between the
canonical function and FDs are given in Table 3. Fisher’s
function coefficients are listed in Table 4. Those coefficients
were used to build the PF equation as the following [28].�� = ���� × ��������+ ����� × ���������+ ����� × ���������+ �������� (2)
Where PF is the predictor function, FDBW is the fractal
dimension which computes the surfaces perimeter of cells,�������� is the group classification coefficient of FDBW,

FDBBW is the fractal dimension which computes the black
border, ���������is the group classification coefficient of

FDBBW, FDWBW is the fractal demission which computes
the white background, and ��������� is the group

classification coefficient of FDWBW. PF was used to classify
erythrocytes. Classification procedure was done as follows:
erythrocyte was chosen arbitrary from any slide diagnosed
before. All steps for imaging processing were done. The
measurements of FDBW, FDBBW, and FDWBW were
performed. Three PF (PFNormal, PFEchinocyte, and PFSickle
cell) were originated from the substitution for FDBW,
FDBBW, and FDWBW and their coefficients given in Table 4
in Equation 2. PF with larger values indicted that erythrocyte
was belonged to it.

Table 2. Summary of the predictor functions.

Function Eigenvalue % of variance % cumulative Canonical
correlation

1 169.839a 97.4 97.4 0.997

2 4.590a 2.6 100.0 0.906

aFirst two canonical discriminant functions were used in the analysis.

Table 3. Structure matrix of predictor model.

Function 1 Function 2

FDBW 0.874* 0.266

FDBBW 0.490* -0.373

FDWBW -0.024 0.883*

Pooled within-groups correlations between discriminating variables and
standardized canonical discriminant functions variables ordered by absolute
size of correlation within the function.
*Largest absolute correlation between each variable and any discriminant
function

Table 4. Classification function coefficients.

Normal Echinocyte Sickle cell

FDBW 6215.496 7181.635 5237.724

FDBBW 3360.137 3618.205 2853.382

FDWBW 4265.718 4425.267 4502.541

(Constant) -10447.534 -12483.521 -9075.426

*Fisher's linear discriminant functions

Figure 2. Canonical discriminant functions.

Automated cell morphometric method based on discriminant
analysis was suggested by Albertini et al. [28]. Their model
was based on the morphometric parameters such as
chromogenic index and density profile extracted from the
image processing of erythrocytes [28]. As mentioned before
the discriminant analysis the most suitable for morphometric
and morphological classification of erythrocytes [28,30]. The
same analytical method was used in this study but with
different predictor variables. Fractal analysis expresses well the
details of the outer features of the object [31,32].
Consequently, fractal dimensions were chosen as predictor
variables in the present study. FD was used before to study
living cells and tissues in normal and different pathogenic
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cases [31,33,34]. A set of fractal dimensions was examined to
discriminant between three groups of erythrocytes. The
discriminant analysis identifies the linear combinations of
quantitative predictor variables that best characterize the
differences between groups. Then the coefficients for each
variable were estimated, and the resulting functions provide
classification rule. By using FD from three different
erythrocyte cell shape morphologies, three PF were
constructed. PF sensitivity and specificity were higher than
other classification functions used in the previous study. This
can be explained as the fractal dimensions are more suitable to
describe the morphological changes than other parameters.

Conclusion
The fractal analysis in the present study reflected well the
morphological characteristics of the erythrocytes. Highly
sensitive predictor model was constructed based on fractal
dimensions. It can be concluded that fractal analysis is a
powerful tool to describe the physical of biostructures. Also, it
can be used as an accurate biomarker for cells differentiation.
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