LETTER

Flare-up of Nipah Infection in India

Roy N and Raj U*

Department of Bioinformatics and Applied Sciences, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India

*Correspondence to: Raj U, E-mail: utkarsh.iiita@gmail.com, Tel: +91-9936100030

Received Date: 09 July 2018; Accepted Date: 04 September 2018; Published Date: 11 September 2018

© Copyright The Author(s). First Published by Allied Academies. This is an open access article, published under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0). This license permits non-commercial use, distribution and reproduction of the article, provided the original work is appropriately acknowledged with correct citation details.

INTRODUCTION

Nipah infection gives a standout amongst the most striking cases of a rising infection and delineates a considerable lot of the pathways driving from a natural life repository to human diseases. After Zika [1] and Ebola [2], it’s one more frightening zoonotic infection with a snappy name. Fruit Bats of the order Chiroptera, Pteropus genus are the natural host of this deadly microbe [3]. However, the zoonotic cycle of this infection also includes pigs as intermediate hosts only in the first occurrence in Malaysia [4,5]. The recent upsurge of this rare, brain-damaging virus in the state of Kerala, India, for the first time, infecting at least 19 people and killing 17 of them, has raised many concerns [6].

The severe upsurge of febrile encephalitis appeared in several villages engaged in raising and breeding of pig of Malaysia during September 1998 and June 1999. The infection was identified for the first time in a huge flare-up of 265 cases in Malaysia which began in 1998; out of which 108 are reported to be died of acute febrile encephalitis [7-9]. This resulted in a huge set back to the pig-farming industry as the pig population reduced through selective slaughtering to control the outbreak. Consequently, this led to the shutting down of the farms. In Singapore, several slaughter house workers were also affected [10,11]. The etiological agent was identified from the cerebrospinal fluid obtained from the patients and subsequently named Nipah virus (NiV), an enveloped non-segmented, negative-stranded RNA paramyxovirus [7]. Afterward, few cases were also reported in Bangladesh amid the winters of 2001, 2003 and 2004 and two outbreaks in India during 2001 and 2007 [12,13]. Initial findings of nucleotide sequencing points that Hendra virus shows close resemblance to Nipah virus. However both are not identical. Hendra virus was responsible for causing disease among horses in Australia and three patients were also reported/affected [14]. NiV can be found in the saliva, urine and faeces of the bats however, being the normal hosts; they stay unaffected by this deadly infection. During the outbreak in Bangladesh, it was reported that the infection can spread from the patient to a healthy person [15].

The patients affected with the Nipah infection are having symptoms ranging from a typical pneumonia with gentle neurological disease to deadly occurring encephalitis. The infectivity time of the virus isn’t reported in the literature till now, and the incubation period of the virus was found to be lie in between 4-14 days [16]. Besides, an incubation period up to three and a half months has also been documented [17].

Since there is no vaccine for Nipah virus therefore, prevention is the key to stop the outbreak of the virus. The preventive steps given by the National Centre for disease control (NCDC) India include periodic thorough cleaning and disinfection of piggery with appropriate detergents. Therefore, intensive supportive care becomes the only option to manage the infection. In case of a suspected outbreak, the complete farm should be quarantined immediately. In order to reduce the chances of transmission to humans, selective slaughter of the infected animals along with its proper burial or incineration should be done under proper supervision. One of the foremost preventive strategy is to restrict or completely banning the movement of the animals from the infected farm to other areas. This will be crucial in

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Place</th>
<th>No. of cases</th>
<th>No. of Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>February-2001</td>
<td>Siliguri</td>
<td>66</td>
<td>45</td>
</tr>
<tr>
<td>April-2007</td>
<td>Nadia</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>June* 2018</td>
<td>Kozhikode and Malappuram</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>

*As of 2 June, 2018

Table 1: Deaths due to nipah virus infection in India.
limiting the spread of the infection. Since NiV flare-ups involve pigs or fruit bats, thus, building up an animal health/wildlife reconnaissance system is of utmost importance. This will help public health authorities in giving early alerts/warnings.

CONFLICT OF INTEREST

Nil.

References

http://www.who.int/news-room/fact-sheets/detail/nipah-virus

http://www.who.int/csr/disease/nipah/en/

©The Authors | Journal of RNA and Genomics | 2018 | Vol 14 | 615-616 | OPEN ACCESS