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Abstract

In this paper a hybrid approach of fundus image classification for Diabetic Retinopathy (DR) lesions is
proposed. Laplacian Eigenmaps (LE), a Nonlinear Dimensionality Reduction (NDR) technique is
applied to a high dimensional Scale Invariant Feature Transform (SIFT) representation of fundus image
for lesion classification. The applied NDR technique gives a low dimensional intrinsic feature vector for
lesion classification in fundus images. The publicly available databases are used for demonstrating the
implemented strategy. The performance of applied technique can be evaluated based on sensitivity,
specificity, and accuracy using Support vector classifier. Compared to other feature vectors, the
implemented LE based feature vector yielded better classification performance. The accuracy obtained
is 96.6% for SIFT-LE-SVM.
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Introduction
Diabetic Retinopathy (DR) is the main root cause of blindness
and it happens to people with diabetes. According to
International Diabetes Federation (IDF) people with diabetes
may be increased to 552 million by 2030 [1]. Diabetes related
complications are also increasing, that includes DR, which
effecting 2-4% of people with diabetes [2-4]. It causes vision
loss in the age group between 22-74 in most of the countries.
So many computational systems are developed to support
specialists in so many areas of health care, including DR
[5-10].

So many screening systems are developed to identify different
lesions simultaneously. A Bag-of-Visual Words (BoVW)
model based on visual dictionaries developed [5,6,10]. This
mode needs a visual dictionary for each lesion classification.
Decenciere et al. [11] developed a technique for classifying
referral patient’s data using heterogeneous information. They
implemented wavelet based image characterization for the
detection of DR signs like exudates, microaneurysms, and
haemorrahages. They also used the diabetes related
information like age, weight, diabetes type and demographic
information.

Jelinek and Cree [12] given the explanation about proliferative
retinopathy and it indicate immediate referring of
ophthalmologist for treatment. Different types of multi
resolution analysis techniques were used to recognize the
lesion formation in retina and it showed the accuracy 88%
[13]. Singh et al. [14] developed wavelet transform based
feature extraction and genetic feature selection strategy for

abnormality recognition. It is achieved the accuracy of 94.7%.
Mookaiah et al. [15] developed system based on the existing
published methods. They tested the system with collected
private hospitals and STARE database samples. They achieved
the accuracy of 95% with various ranked features. FU.D [16]
proposed an automated DR screening method for retinal image
grading assessment based on different morphological features
using software. The result of this study yielded the sensitivity
and specificity are reported to be 92% and 94% respectively.
Agurto et al. [17] proposed multi-scale optimization approach
for lesion detection. It uses AM-FM representations, where
partial least square method has applied for classification in
normal and abnormal images. Recently, Luca et al. [18]
proposed bright lesion detection based on the probability maps,
color, and wavelet analysis. The AUC (Area Under Curve)
obtained is around 0.88 to 0.94. Ramon et al. [19] proposed
soft assignment coding/max pooling for exudates detection;
and for feature extraction Speeded up Robust Feature
Extraction (SURF) algorithm is implemented. The reported
AUC is 93.4%. For the detection of lesions, motion patterns
are created for region of interest in color fundus images by
Deepak and Sivaswamy [20]. For feature extraction Radon
transform is used. The sensitivity and specificity are reported
to be 100% and 74% respectively. Sohini et al. [21,22]
proposed a novel technique based on maximum solidity and
minimum intensity for lesion detection. Lesion classified based
on hierarchical classification. The obtained sensitivity and
specificity are 100% and 53.16% respectively. Grinsven et al.
[23] proposed a bag of visual words approach to characterize
the fundus image. They implemented decomposition of image
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as patches. From each image patch, various features are
extracted and classification was done based on weighed nearest
neighbor method. The resulted AUC is 0.90.

In this paper we used a novel combination of the existing
techniques in literature in order to achieve a better sensitivity,
specificity and accuracy compared to former implemented
techniques. In our proposed method, the Contrast limited
histogram equalization is applied as a preprocessing step,
because fundus images in datasets are having noise and they
are poorly illuminated. Contrast enhancement is done to
increase the contrast between exudates and background. The
image with fore ground lesions are segmented using active
contour technique. In order to characterize the segmented
lesions, features are extracted using Scale Invariant Feature
Transform (SIFT). Now LE-NDR technique is applied to get
low dimensionality feature vector. Finally Support Vector
Machine classifier (SVM) is used based on low dimension
feature vector for classification of both the lesions and non-
lesions images.

Proposed method
The proposed method is having various stages for bright lesion
detection in color fundus images. The first stage comprises pre-
processing and the next stage is segmentation of anatomical
structures and pathological parts. The third stage is feature
extraction, stage four is about reduction of feature vector and
the final stage is classification. Figure 1 shows the block
diagram of proposed technique and the following sections will
give detailed explanation about each method.

Figure 1. Block diagram of proposed system for lesion detection.

Image pre-processing
The color fundus images comprise Red (R), Green (G), Blue
(B), intensity channels. Compared to other two channels, green
channel is having most of the information about lesions. That
is lesions appear brighter in this channel and other two
channels are noisy. So we considered this channel for further
processing. To increase the contrast between exudates and
background Contrast Limited Adaptive Histogram
Equalization (CLAHE) is applied to the green channel, it is
shown in Figure 2. So that the sharp edges of lesions can be
obtained.

Pre-processing step applied for all used images because images
in databases are noisy and poorly illuminated. In order to
suppress undesirable some visible spots, noise, lines, obstacles
in CLAHE image, Bilateral Filter (BF) [24,25] is used.
Because it smoothens flat surfaces while preserving sharp
edges in image by having same pixels placed in every
neighborhood. This is shown in Figure 2d.

Optic disk detection and elimination
There is higher order similarity in between Optic disk and
exudates. By mistake, the system identifies the OD as a lesion.
So the removing of OD is imperative for precise segmentation
of exudates. The optic disk occupies maximum area in the
fundus image and for this reason, by using connected
component analysis, the OD is eliminated shown in Figure 2e.

Figure 2. (a) Color fundus image (b) Green channel extracted image
(c) Histogram equalized image (d) Bilateral filter applied image (e)
optic disk eliminated image.

Figure 3. (a) Thresholded image (b) Lesion segmented image.

Lesion segmentation
To identify the exudates region on the fundus image with
proper description of their exact shape an Active Contour
Technique (ACM) can be applied. By applying ACM the
mostly likely boundary of extracted exudates region will be
obtained. The binary image with exudates is used for initial
position for active contour model in Figure 3. The precise
boundary of exudates are obtained by using variational level
set model [26,27], which is efficient in computation wise, and
also the movement of contour towards the object boundary is
more compared to other segmentation models such as snakes
[28], Geometric Active Contours (GAC) [29], Gradient Vector
Flow (GVF) [30], and traditional level sets [31].

In [32] signed pressure force (spf) function is implemented. It
varies the strength of signs of pressure forces inside and
outside the regions of interest. So that the contour shrinks
when outside the object or expands when inside the object. The
initial level set contour ϕ is defined around the detected lesions
area is shown below.∂ ∅∂� = � � � . ��� ∇ ∅∇ ∅ + � ∇ ∅ + ∇� � � . ∇ ∅ (1)
Where s is spf function and ∆ is Laplacian operator.
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This technique is robust to noise and it can handle without
edges of objects in images. The level set evolution converges
with 120 iterations by this technique compared to other
segmentation models [28-31]. For these techniques the level
set evolution converges with 6000 iterations.

Feature extraction
For extracting distinctive invariant features from images Lowe
[33] given SIFT (Scale Invariant Feature Transform). SIFT that
can be invariant to image scale and rotation. It is more robust
to various changes in images like scaling, rotation, noisy,
distorted, blurred. It locates the most key points compared to
Speeded up robust feature extraction (SURF) algorithm [19]
with less time. Here SIFT is applied for lesion features
extraction in color fundus image shown in Figure 4. SIFT
comprises four main stages: (a) scale-space detection, (b) key
point localization, (c) orientation assignment and (d) key point
descriptor. The first stage utilized Difference-of-Gaussian
(DOG) function to identify potential interest points [33], which
were invariant to scale and orientation. DOG was used instead
of Gaussian to improve the computation speed [33-35].

D (m, n, σ)=(G (m, n, k, σ) G (m, n, σ)) × I (m, n)=L (m, n, k,
σ)-L (m, n, σ)

where × is the convolution operator, G (m, n, σ) is a variable
scale Gaussian, I (m, n) is the input image D (m, n, σ) is
Difference of Gaussians with scale k times.

Here the low contrast points and edge responses are eliminated
in key point localization. Within a region around the key point,
to obtain an orientation assignment, an orientation histogram
was formed from the gradient orientations of sample points
[33].

Figure 4. SIFT applied image.

Dimensionality reduction using Lapalcian eigenmap
(LE) function
Here the used SIFT, located more number of key points in
fundus image. So it is necessary to reduce the dimension of the
feature vector to have better classifier performance.

Dimensionality reduction techniques are utilizing from so
many years in pattern recognition and in other fields. PCA is
one of the most popular linear dimension reduction methods
because of its relative simplicity and effectiveness [36]. There
exists other dimension reduction method like Isomap, Locally
Linear Embedding (LLE). Belkin et al. proposed a dimension
reduction method based on manifold embedding with
Laplacian Eigen functions [37].

By applying LE technique, the data set {x1, x2,..., xn} in the
high dimensional space Rh is mapped into the low-dimensional
space Rl, which is represented as {y1, y2,...... ym}.

LE technique uses the construction of graph by considering
each pattern as node and it computes graph Laplacian Eigen
functions. Figure 5 shows the illustrations for dimensionality
reduction for various patterns selected from lesions. Here
Principal Component analysis (PC) [36] is compared with
applied LE technique.

Figure 5. The highest two PCs (left graph) and LE functions (right
graph) from various patterns from lesions.

Classification
After the reduction of features using LE technique, the
obtained features given to Support Vector Machine (SVM)
classifier. However, classification is important whether the
detected pathologies are true exudates or not. SVM classifier is
efficient for separating two different types of datasets and it is
less complex. The SVM classifier is having a hyper plane to
separate two datasets. In this system, SVM classifier is coupled
with LE function. So that the number of false positives can be
reduced and accuracy can be increased.

Experimental Results

Dataset
The proposed system is trained and tested by considering two
publicly available datasets for normal and diseased patients.
DIARETDB1 [38] dataset is having total 89 images with 500
field of view. These images are separated into two groups for
training and testing. MESSIDOR [39] dataset contains total
1200 images with 450 field of view. We have implemented our
CAD screening system on these images.

The statistical measures used for analyzing the performance of
CAD screening system defined in terms of True Positives (TP),
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False Positives (FP), True Negatives (TN), and False Negatives
(FN).

Sensitivity (sen)=TP/(TP+FN) × 100

Specificity (spe)=TN/(TN+FP) × 100

Accuracy (acc)=((sen+spe)/2) × 100

Where, TP-Number of abnormal images correctly identified as
abnormal.

TN-Number of normal images correctly identified as normal.

FP-Number of normal images incorrectly identified as
abnormal.

FN-Number of abnormal images incorrectly identified as
normal.

To know the diagnosis performance we have to measure the
sen, spe, and acc parameters. Figure 6 shows the ROC curve. If
an ROC curve shows AUC=1, then it is perfect diagnosis,
otherwise, if it shows 0.5, then it is worst case. In the proposed
work SIFT-LE-SVM have achieved AUC=0.966 compared to
SIFT-SVM AUC=0.953. The performance of proposed work is
compared with previous researcher’s work shown in Table 1
and Figure 7.

Figure 6. ROC curve for proposed system.

Table 1. Comparison of previous work and proposed work.

Technique Sensitivity
(%)

Specificity
(%)

Accuracy (%)

Koh [40] 89.37 95.57 92.4

Xu [41] 92 96.4 94.4

Mookiah [15] 90 100 95

Anderson [5] 94.7 96 95.3

Luca [18] 90.1 98 94.1

Ramon [19] 92 94.4 93.4

Deepak [20] 92 98 95

Sohini [22] 92.8 98 95.35

SIFT-SVM 90.6 100 95.3

Proposed method SIFT-LE-
SVM

92.8 100 96.66

Figure 7. Comparison of accuracies with proposed system.

Conclusions
The proposed system applied automated feature extraction
technique SIFT, LE and SVM for retinal image analysis for
lesion identification. This system consisting of preprocessing,
OD detection and elimination, exudates region detection using
ACM and lesion classification. SIFT is applied to have an
automated feature set for classification. LE method used to
map high dimensional features to low dimensional features. So
that SVM classifier performance can be raised. The proposed
system is tested on two publicly available fundus image
databases, i.e. diaretdb1and MESSIDOR. Our system has
achieved a higher value of accuracy 96.6% compared to
previous existing techniques. The efficiency of proposed
system can be improved further by using a more accurate
method for OD detection, lesion segmentation and by using the
combination of classifiers.
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