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Introduction
Thoracic aortic aneurysms (TAAs) present a major group of 
diseases of cardiovascular pathology affecting 5.9:100,000 
worldwide [1]. Aortic aneurysms develop asymptomatically 
until occurs aortic rupture or dissection often cause of 
morbidity. The main risk factors for TAA formation still 
remain the same for all cardiovascular pathology, including 
hypertension, atherosclerosis, age, gender and eventually genetic 
predisposition, which is on the focus for ourdays researches [2].

TAA develop and expand as a result of the predominant 
destruction within remodeling process where the alterations 
weakening the vascular wall increase the risk of dissection and 
rupture [3,4]. The extracellular matrix (ECM) responsible for 
aortas wall resistance to the different blood pressure, vascular 
smooth muscle cells (VSMC) and endothelial cells involved to the 
different mechanisms of remodeling play the crucial role in the 
pathogenesis of TAA [5]. Fibrillin -1 (FBN1), transforming growth 
factor (TGF), matrix metalloproteases (MMP) are analyzed in 
the TAA molecular background and their importance for clinical 

determination and individualization are more often valuable. 
How FBN1 or TGFBR mutations lead to the disease are not well 
understood at a molecular level, the proposed mechanisms trigger 
the alterations in calcium binding EGF-like domains and increased 
bioavailability of transforming growth factor [5-9].

Extracellular Matrix and Proteases
The main roles of ECM destruction share various proteases: 
matrix metalloproteases (MMP), chymase, triptase, cathepsins, 
serine elastase from neutrophils, enzymes from tPA, uPA. This 
seems to be proved by Dobrin et al. [10,11]. His experiments 
in vitro showed that elastase and collagenase trigger vessel 
dilatation and rupture. Following the proteolysis studies a 
lot of researches’ works were done on abdominal aortas, 
using reproducible animal models as well [12,13]. The 
proteolytic activity in tissues remains defendant from a balance 
between proteases and their inhibitors. Inhibitors of MMPs, 
tissue plasminogen activator (tPA) are more expressed in 
atherosclerotic diseases of aorta than in dilatative pathology of 
vessels, thus ECM destruction by decrease activity of inhibitors 
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in the wall of aortas may lead to their aneurysmatic issue [13]. 
The role of MMPs pathway has been described using gene and 
cell transfer to show high expression of TIMP and plasminogen 
inhibitor (PAI-1) in a remodeling process of aortas tissue [14].

Predisposition of MMP-2 and MMP-9 expression has been 
reported to be involved to the TAA development caused by 
ECM destruction [15,16]. Proteases origin, release and role 
for dilatation the aortic wall is recognized but the regulation 
process still remains under discussion. Cystic medial necrosis 
associated with TAA is definitely of non-inflammatory origin. 
Immunohistochemical staining with monoclonal antibodies 
against CD3C showed the significantly increased amount of T 
lymphocytes flattening the media of TAA [17]. Mononuclears as 
T lymphocytes and macrophages have been observed in various 
types of TAA within mixed etiologies [18].

This could prove that infiltration of T lymphocytes into TAA 
occurs through the vasa vasorum due to their excessive amount 
around the vasa vasorum within revascularization process 
[19,20]. Tang with colleagues found that Th1-type immune 
responses with activated CD4 and CD8 producing interferon- γ 
predominate in TAA suggesting the reason why the vessel wall 
is expanding [21].

Luminal thrombus occurred due to the atherosclerotic lesion in 
rare cases of TAA could collaborate to release proteases from 
polymorph nuclear neutrophils. This was detected by Sangiorgi 
et al. in type A dissections in humans. It has been found increased 
MMP-9 levels in plasma as early as 1 h after symptoms onset 
suggested that degranulation of polymorphonuclears release 
the proteases [17]. It is possible to speculate that the thrombus 
modulates the aortic size by trapping neutrophils with proteases 
release to the aortic wall.

Smooth Muscle Cells 
The results of affected SMC exposed to TAA development 
are multiple and complex. A medial degeneration in TAA is 
common not in aging process itself but was observed in patients 
with TAA. Histological investigations indicated that TAA has 
a greater medial area compare to healthy aorta. Collagen and 
elastin are significantly reduced in the wall. Paul et al. reported 
that SMC density is not reduced in TAA [21]. The changes in 
aortas wall parameters could be spotted due to SMC remodeling 
during dilatation process and proteolysis excluding the role of 
apoptosis when contractile type of myocytes turns to synthetic 
type [22]. The controversial findings were published by He et 
al. [18]. He used α-actin staining method and noticed the normal 
aortas had significantly more α-actin staining than pathological 
TAA. Another team with Zhu et al. investigating MYH11 gene 
in patients with familial TAA also observed the SMC reduction. 
Their works presumed the apoptosis might be the main reason 
of SMC changes in TAA wall despite they did not observe 
degraded DNA ladder in electrophoresis gel assay [16,21]. The 
increased knowledge of the genes affecting individually TAA 
syndrome could explain the differences in SMC density and 
apoptosis.

Experimental works with abdominal aortas showed that addition 
of SMC prevents aneurysmal formation, suspending expansion 
in an already dilated vessel [23,24]. This fact proposes to think 
the similar mechanism could be discovered for TAA despite 
the different structure between TAA and AAA (the medial 

layer is thicker in thoracic aortas). As SMC supports vessel 
wall hypertrophy and contributes the healing process, when 
mechanical stimulation of these cells allows producing TGF-
beta1, ECM and inhibitors of proteolysis, which all together 
increase aortas wall size [25]. The other way in contrast the 
macrophages respond to mechanical damage releasing proteases 
with effect on ECM and wall destruction during dissection 
formation. Both mechanisms: destruction and reconstruction or 
healing depends individually and perform in particular manner. 
The differences in aortic healing between dissection and 
aneurysm depend on a level of lesion but differences in patient 
homeostasis remains unclear [2].

TGF-beta 
The role of TGF-beta signaling pathways in ascending TAAs 
described in Marfan syndrome stimulated a particular interest 
within non syndromic features of TAA. TGF-beta is a family 
of soluble proteins, cytokines, including three TGF-beta 
isoforms that has been involved in various cellular processes: 
angiogenesis, proliferation, differentiation, apoptosis, wound 
healing and described in conjunction within modification of the 
ECM [3,26,27]. A lot of studies for its role in stimulating collagen 
production and regulation pathways involved in pathogenesis of 
fibrosis of the liver, heart and the lung [28,29]. The main sources 
of TGF harvest in the body are bone matrix and the α-granules 
of platelets. Cells secrete TGF-beta in a biologically inactive, 
latent form bound to propeptide and called LAP (latency 
associated peptide). Use of transient acidification release TGF-
beta from its non-covalent association with LAP. Other proteins 
such as proteoglycans, type IV collagen, and fibronectin bind 
TGF in non-covalent manner. The determination of TGF- beta in 
blood (free TGF-beta or associated with α2macroglobin-α2M) 
has been involved in the diagnostics of cancer, immunological 
disorders, hematology and fibrotic diseases [30,31]. The 
classical TGF-beta or Smad mediated signaling pathway is 
important to induce ECM deposition as well as repressing ECM 
degradation (through TIMP-1, TIMP-3) [32,33].

In the classical TGF-beta signaling pathway all three isoforms 
dimerize and bind to a heteromeric receptor complex, both of 
them consisting of two types I and II receptors with serine-
threonine kinase activity. Type II receptor activates type I receptor 
through transphosphorylation way [34,35]. The activated type I 
receptor phosphorylates a receptor- Smad (molecular signaling 
intermediates, named for their homologous in Caenorhabditis 
elegans (sma genes: SMAll, regulators of body size) and 
Drosophilla (mad genes; mothers against decantaplegic(dpp). 
The R-Smad interacts with co-Smad (Smad4) and this formed 
complex working as transcriptional regulator (activates or 
suppresses) passes the information to the nucleus inducing or 
repressing genes [36,37].

There are many speculations and hypothesis on other way of 
TGF-beta signaling- alternative or Smad independent within the 
researchers’ studies. This alternative signaling can proceed with 
alternative key mediators in the classical way or signals spread 
directly without type I receptor involvement [37,38]. The lack 
of Smad and co-Smad activity and abnormal type I receptor; 
activation of R-Smad by other signaling mediators without 
direct interaction of TGF-beta receptors may also activate Smad 
independent signaling, which is not fully understood due its 
complexity and diversity [39,40].
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The way of TGF-beta regulation is multiple and depends 
on different mechanisms: extracellular regulation of ligand 
availability, regulation at the transcriptional level by activators, 
repressors and terminators [41]. Also by multiple feedback and 
cross mechanisms that affect intracellular signal [42]. All these 
factors and their relationship to modify the response in signaling 
TGF-beta pathway are in Figure 1. 

TGF-beta identified as cell growth regulator is valuable not 
only for its implication in matrix deposition, but it works in 
matrix degradation as mediator for structural events of the 
ECM. It was demonstrated in vitro by treating with TGF-beta 
and this resulted the production of type I and type II collagen, 
involved collagen gene expression [43,44]. These studies were 
important to explain the role of TGF-beta normal fibrogenesis. 
Later this signaling pathway was implicated for therapeutic 
target in pathological fibrosis [44,45]. It was observed that the 
overexpression of TGF-beta1 may stabilize the degeneration 
within ECM remodeling during aneurysm development. The 
study with rat abdominal aortic aneurysm when virus mediated 
overexpression was induced increased endogenous TGF-
beta1 level and stabilized dilatation and decreased aortic wall 
degeneration.

TGF-beta signaling regulates vascular matrix proteins while 
the abnormalities in its pathway may cause harm to normal 

vascular structure and function. There are known several 
vascular disorders in conjunction with alterations within TGF-
beta pathway, including aortic aneurysm syndromes, primary 
pulmonary fibrosis and atherosclerosis [46-48].

TGF-beta and Aneurysm Development
There are two major groups of published investigations: first of 
them demonstrated different mutations of TGF-beta type I and 
II receptors within the kinase domain, another group stated that 
the TAA development is associated with increased proteolysis 
of ECM due to increased activity of TGF-beta.

Denton et al. with his works in vitro developed transgenic 
mouse with control of the COL1A2 promoter expressed a 
fibroblast restricted –kinase deficient TGF-beta RII. They 
found that (due to overexpression of the mutant receptor) 
the transgene works with dominant-negative effect on mouse 
and performs fibroblast specific suppression of TGF-beta 
signaling developing paradoxical results– the mice appeared 
with dermal and pulmonary fibrosis. The authors explained 
that the dominant-negative TGF-beta receptor may increase 
TGF-beta signaling in functional complexes by interactions 
of ligands and the presence of the mutant TGF-beta RII may 
change the orientation of wild type receptors with simplest 
way for signaling. The increased TGF-beta signaling may be 

Figure 1: Fibrillin-1 regulates the bioavailability of TGF-βi. TGF-βi is secreted by most cells as part of a Large Latent Complex (LLC) and 
remains inactive in the extracellular matrix. LLC contains Latent TGF-β Binding Proteins 1-4 (LTBPs 1-4) which interact with the N-terminus 
of fibrillin-1 (1) causing dissociation of the complex and a subsequent release of active TGF-β1. Following its release TGF-β1 binds to TGF-β 
receptor II which phosphorylates TGF-β receptor I (3). The latter recruits the formation of SMAD protein complex (4a). The complex enters cell 
nucleus and acts as a transcription factor for genes encoding connective tissue growth factor (CTGF), plasminogen activator inhibitor-1 (PAI-1), 
and multiple collage genes (5). Activation of SMAD independent pathway (4b) also results in formation of transcription factors (5).
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associated with heterozygous TGF-beta receptor mutations 
which can work accessory [48].

TGF-beta signaling increase by kinase deficient receptors 
alters receptor stability. This process is regulated by receptor 
interactions with accessory proteins that interacts TGF-beta 
signaling. Guglielmo et al. stated that TGFBR2 mutations 
in TAA syndromes may facilitate interactions with SARA 
(Smad anchor for receptor activation) or decrease relation with 
Smad7, subsequently resulting prolongation of TGF-beta signal 
transmission [49].

There is the possibility that TGF-beta receptor complexes, 
incorporating kinase deficient receptors with lack of direct 
signal, able to form signaling platforms with interactions among 
signaling components. The stimulation of human mesangial 
cells with TGF-beta resulted collagen gene COL1A2 expression, 
which was dependent on kinase (P13K) activity. With use of 
P13K inhibitors and mutants of Smad3 was concluded that the 
binding of TGF-beta allows Smad3 mediated collagen gene 
expression with no dependency on phosphorylation by TGF-
beta RI. Thus, TGF-beta RII mutations, which are able to bind 
TGF-beta, could induce alternatively signaling without receptor 
kinase activity [50,51].

As mentioned previously increased TGF-beta activity is related 
with TAA formation inducing matrix deposition, regulating 
its degradation through MMP activity. TGF-beta induced 
ECM degradation may take place with or without Smad 
mediated pathways [52,53]. TGF-beta role within the aneurysm 
syndromes has been described in Marfan (MFS) context, where 
the dilatated aorta is very common among other genetically 
determined features [54].

Despite the hypothesis and all proposals explaining the cellular 
response to TGF-beta the mechanisms “how it works” are still 
unclear. There are different cells in aortas tissue and as known 
during the studies, the different type of cells reacts differentially. 
Thus, the complex of various mechanisms and reactions should 
take place in aortas aneurysms development. (See the Chapters 
“Extracellular matrix and proteases” and “Smooth muscle 
cells”).

Fibrillin-1 and Aneurysms
The FBN1 gene is very large, app 200 kb in size and its coding 
sequence divided into 65 exons, located on chromosome 15q-
21.1 [55,56]. It encodes fibrillin- 1 protein, which is large 
enough – 350 kDa. Fibrillin-1 protein consists of epidermal 
growth factor domains and a small number of TGF-beta1 
domains [57-70].

Genetic predisposition in the etiology of thoracic aortic 
aneurysm and dissection has a very high value. Thoracic aortic 
disease is inherited in an autosomal dominant manner with 
or without syndromic features. There are known syndromes 
as Marfan (MFS), Loeys-Dietz, Weill-Marchesani which are 
associated with various mutations in FBN1 gene. The absence 
of phenotypic characteristics may be not enough evaluated with 
the potential risk to develop aneurysm and/or dissection bearing 
in mind that FBN1 mutations may have asymptomatic features 
and genetic determination can predispose the risk [5].

LeMaire et al. performed a multistage genome-wide association 

study on a spectrum of sporadic thoracic aneurysm and dissection 
(STAAD) to identify the single nucleotide polymorphisms 
(SNPs) associated with FBN1. This study was performed on 
327 628 SNPs for 765 patients with sporadic thoracic aneurysm 
and/or dissection and compared with healthy by cardiovascular 
point more than 4000 individuals. None of 765 patients have 
had a history of Marfan syndrome or other familial inheritance. 
Five SNPs among all of them were identified with genome-wide 
significance (p<5 × 10-8). All five SNPs (rs1051977, rs4774517, 
rs755251, rs1036477, rs2118181) fall into an area of linkage 
disequilibrium app 305kb in size, encompassing the entire 
FBN1 gene. An important finding was a very strong association 
of rs10519177 with dissections of aortic aneurysms (OR=1.8, 
with p=1.2 × 10-8) [70]. Others two studies with FBN1 SNPs and 
TAAD association were performed by Iakubova with colleagues 
at Yale University [71] and by Lesauskaite leading her team at 
Lithuanian University of Health Sciences [72]. Quite valuable 
findings were established within the latter study: patients with 
ascending aortic aneurysm had higher minor allele frequency 
in FBN1 SNPs rs755251s, rs10519177, and rs4774517, as 
compared to the reference group (p=0.003). Minor alleles of all 
FBN1 SNPs studied were more frequent (p ≤ 0.0005) among 
patients with Stanford A dissection as compared to the reference 
group subjects [72]. The studies demonstrate the association 
of several polymorphisms, encompassing the FBN1 gene with 
sporadic TAAD in the absence of syndromes or etiology of 
familial history of TAAD. The future experiments and growing 
knowledge of FBN1 mutations may be valuable to diagnose and 
determine the risk of TAAD.

FBN1 and TGF-beta
Fibrillin-1 works as a major structural component of ECM 
microfibrils and also regulates TGF-beta1 activity [57] (See 
Figure 1).

In the wild type population fibrillin-1 acts regulating the 
activation of TGF-beta, while abnormal fibrillin-1 with deficient 
functionality causes excessive amounts of active TGF-beta to 
be released from the matrix. It was demonstrated in mice with 
deficiency of fibrillin-1 and that aortic aneurysm in these mice 
can be prevented by administration of TGF-beta neutralizing 
antibodies [62,63].

The angiotensin pathway provides another way to target TGF-
beta. Angiotensin II is a vasoconstrictor that signals through 
angiotensin II type I receptor and has been known in animal 
experiments by Everett et al. in 1994 [64]. Also angiotensin 
II activates trombospondin -1, which is an activator of TGF-
beta signaling. The medicaments, which can block angiotensin 
receptor (Losartan- AT1 receptor antagonist) usually use for 
hypertension treatment can decrease TGF-beta signaling and its 
activity in plasma.

Brooke et al. reported that losartan was effective in within TGF-
beta control in Marfan syndrome patients. This study highlighted 
the importance of cytokine activation through ECM and may be 
valuable in other conditions where TGF-beta is increased (organ 
fibrosis, cancer progression and others) [65]. The angiotensin 
receptor blocator Losartan is effective to reduce the thoracic 
aneurysm formation in Marfan syndrome [64].

The same study of Brooke et al. [65] demonstrated a significant 
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decrease in the aortic root enlargement in population of aortic 
disease with several etiologies with administration of ARB. The 
very interesting finding was performed by Chung and coworkers 
with their experiments on mice [66]. They showed that long term 
doxycycline administration together with atenolol (beta blocker) 
may prevent thoracic aortic aneurysm formation in Marfan 
syndrome through the inhibition of matrix metalloproteinase-2 
and -9 by multiple actions. As previous researches have been 
focused on doxycycline effect within abdominal aneurysma and 
was showed the suppression of aneurysmatic expansion due to 
the proteases inhibition [66-68]. 

There are controversial findings with TGF-beta1 concentration 
measurement levels, within different populations published 
since 2013. The scientist group from Japan stated that circulating 
TGF-beta1 is not a diagnostic and therapeutic marker for MFS 
patients because they didn’t find any statistical difference 
between MFS patients and controls by measuring TGB-beta 
concentration in plasma [69]. Another study provided by The 
Netherlands scientists stated an opposite opinion that elevated 
TGF-beta1 level in MFS patients is correlated with larger aortic 
root diameters and may predict cardiovascular events serving as 
prognostic biomarker [70]. A researchers’ team from Lithuania 
[73] measured the TGF beta1 concentration for sporadic TAAD 
and found to be a valuable marker, especially for dissections. 
They found the association of the TGF beta1 concentration with 
different genotypes of FBN1 SNPs [74]. The main reason why 
such different results among studies could explore might be 
a genetic difference, the presence of a mutation in TGF-beta 
receptor genes rather than in the FBN1 gene. That is to say, 
further and wider analysis is needed by mentioned TGF-beta 
and FBN1 interaction mechanism to assess. 

Conclusions
Over 600 FBN1 mutations have been discovered in connection 
with Marfan syndrome and eventually this list continues to grow. 
The genetic findings may be the basic diagnostic background 
to determine the risk of non syndromic TAAD. However, 
there are many questions requiring explanation or discovery 
in pathogenesis of TAAD development. First, the interactions 
of FBN1 and TGF-beta whether the fibrillin-LTBP junction 
is needed to protect the LLC from proteolytic activation or 
whether FBN1 functions more directly in controlling assembly 
or stability of latent TGF-beta complexes. Second, the balance 
between the need for TGF-beta in normal development 
and suppression of its activity in the treatment of disease 
must be evaluated in future works. Third, aortic diseases are 
heterogeneous along the whole vessel, different determinants 
and contribution of SMC, inflammation and thrombus formation, 
a failure of reconstruction and all these matters according to the 
different embryonic origin of abdominal and thoracic parts. 
Thus, future works to be done on namely different cellular and 
molecular mechanisms, diameter and length increase, rupture 
and dissection. The clinical application of the genetic studies on 
FBN1 polymorphisms must have a wide approach in practice 
and complexity of multiple studies.
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