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Abstract

Toll-like receptor 9 (TLRY9), a naturally existing immune regulatory site, not only takes part in
enhancing anti-tumor immunity but also promoting the immunosuppressive environment of the
growing tumor. TLRY9 has shown its potential activity as a therapeutic target in cancer
immunotherapy. However, the increased pro-tumor inflammation mediated by TLR9 should also be
considered. Therefore, it is important to develop a better understanding of its regulatory mechanisms
to improve the therapeutic efficacy. This review will discuss the mechanisms of immune homeostasis
regulated by TLR9 signaling pathways, and also introduce the strategies of how to harness the

immune regulatory balance by TLRY9
immunotherapies.

agonists,

CpG oligodeoxynucleotides, in cancer
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Introduction agonists. Due to the pro-tumor inflammatory cytokines
] ) ) ) produced by CpG ODNSs, we also discuss options to exaggerate
With improved understanding of the immune system, (e anticancer effects without causing excessive inflammation

immunotherapies, such as immune checkpoint inhibitor and
chimeric antigen receptor T cell therapies, have shown
unprecedented efficacy in treating cancer [1]. The success of
cancer immunotherapy reveals the power of host immunity on
killing cancer cells and the feasibility of unleashing restraints
on anti-tumor immunity. However, the immunosuppressive
tumor microenvironment (TME) and the low immunogenicity
of cancer cells restrict the therapeutic efficacy of cancer
immunotherapies in a fraction of patients [2-4]. Therefore,
deciphering the underlying mechanisms promoting the
generation of an immunosuppressive TME is urgently needed
to better harness host anti-tumor immunity. Toll-like receptors
(TLRs) serve as a bridge between innate and adaptive
immunity [5-7], and are naturally existing immune regulatory
sites that not only take part in the enhanced anti-tumor
immunity but also influence the immunosuppressive
environment of the growing tumor [8,9]. TLRY, one of 13 TLR
types, has been widely studied as target molecular in relation to
anti-tumor therapies in clinical trials [10]. Chemically
synthesized CpG oligodeoxynucleotides (ODNs) are confirmed
TLRY agonists that directly inhibit cancer cells, as well as
induce anticancer immune responses, with acceptable toxicity
[11,12]. Thus, TLRY plays a key role in multiple anticancer
effects mediated by CpG ODNSs. Furthermore, CpG ODNs may
be exploited as immunotherapeutics or immune adjuvants to
improve the efficacy of current immunotherapies.

In this review, we discuss the results of available studies to
develop an improved understanding of homeostasis of the TME
and regulation of the immune system triggered by TLR9
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promoting the development of cancer in order to improve
current immunotherapies.

TLR9-mediated TME in Immunotherapies
Homeostasis of the TME

The TME consists of stromal cells, inflammatory cells,
extracellular matrices as well as tumor cells. The TME not only
plays an important role in the processes of tumor initiation,
progression, and metastasis, but also influences the el /cacy of
anti-tumor therapies [1,13]. Homeostasis of the immune system
is maintained by a balance between the suppressed and
enhanced immune responses. However, the TME is different
from the normal tissue milieu. Tumor cells and tumor-
infiltrating immune cells usually suppress activation of the
immune system through changes in the expression or secretion
of immunosuppressive factors. This maintains homeostasis of
the TME via immune-tolerance [14,15].

Under steady state conditions, cytokines secreted by tumor
cells, and tumor-infiltrating immune cells, can restrain the
activation and maturation of pDCs. Non-activated pDCs play a
critical role in the development and maintenance of the TME
through decreasing the secretion of perforin and granzyme by
CD8+ T cells, suppressing natural killer (NK) cell-mediated
cytotoxicity, and promoting the differentiation of CD4+ T cells
into activated regulatory T cells (Tregs) [16,17]. For example,
interleukin(IL)-6 interferes with the maturation of pDCs, IL-8
blocks the migration of pDCs into lymph nodes, IL-10 inhibits
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the further expansion of T-cells mediated by pDCs, and
elevated expression of cyclooxygenase-2 interferes with pDC
functions in multiple ways [8].

Non-activated pDCs (such as pDCs within tumor-draining
lymph nodes and tumor-infiltrating pDCs) express high levels
of suppressive immunomodulators such as indoleamine 2,3-
dioxygenase (IDO). The increased expression of IDO in pDCs
results in activation of stress-response kinase GCN2, which
can further inhibit T cell proliferation and promote the
differentiation of CD4+ T cells into activated Tregs by
inhibiting the activation of mTORC2 and Akt signaling
[8,18-23]. Apart from its contribution to Treg activation, IDO
can also alter the phenotype of macrophages and neighboring
cells to increase the secretion of inhibitory cytokines such as
IL-10 and transforming growth factor (TGF)-B. Moreover,
these macrophages and neighboring cells can inhibit the
production of the positive regulator, IL-12 by pDCs [24,25].
Thus, in the context of tumor progression, the TME exhibits a
multifaceted ability to play a suppressive role in the immune
balance.

Although checkpoint blockade therapies can improve
endogenous immune responses against tumors significantly,
immunosuppressive mechanisms reduce the curative effects in
some patients. It is likely that the dynamic TME can avoid
immune-mediated clearance when inhibiting a single signaling
checkpoint due to compensatory enhanced immunosuppressive
mechanisms [26,27]. Thus, it is difficult to improve
immunotherapy by only enhancing the anti-tumor effects or
inhibiting the immunosuppressive mechanisms at a single
signaling checkpoint. Reprogramming the immune response
would be more beneficial.

Regulation of the TME by TLRY agonists

TLRY participates in both positive and negative immune
regulation, thereby maintaining homeostasis of the immune
system. TLRY agonists can strengthen the recruitment or
activation of activated effector cells to tumor tissue and
overturn the pDCs induced immunosuppression mechanisms
simultaneously. In other words, CpG ODNs harness the
immune regulatory balance in cancer immunotherapy,
especially the mechanisms related to maturation of pDCs, is
key to this understanding.

Immunomodulatory effects of CpG ODNs

pDCs, the only DCs expressing TLRY, play a key role in
initiating TLR9-mediated immune responses and balancing the
TLRO-triggered immune system. The maturation of pDCs is
affected by the presence of some diseases such as autoimmune
diseases, viral infections, and tumors, and can then influence
and further shift the immune balance (Figure 1) [16,20,28,29].
In addition, T cell types mediated by activated pDCs determine
the suppression or activation of immune surveillance in the
TME.

Through the pathway of interferon regulatory factor-7 (IRF-7)
that is expressed constitutively at high levels in pDCs, CpG
ODNSs can induce pDCs to secrete type I interferons (IFNs),
promote pDC maturation, increase inflammatory cytokine
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secretion by innate immune cells, and further promote adaptive
immune responses to enhance immunotherapeutic effects
[16,30-32]. Furthermore, IFN-o can block angiogenesis to
reduce tumor growth [33,34]. In response to stimulation by
CpG ODNs, pDCs differentiate into mature DCs with
upregulated major histocompatibility complexes and co-
stimulatory molecules. Such mature DCs have an increased
ability of antigen -cross-presentation to CD8+ T cells
[20,35,36], and promote T-cell survival, type 1 T helper cell
(Th1) polarization, CD8+ T cells activation, memory T cell
differentiation, and enhance NK cell-mediated cytotoxicity and
IFN-y  production [37-49]. 1In this situation, the
immunosuppression state can be overturned and the immune
system can further exert an anti-tumor effect.

Molecular regulation mechanism of CpG ODNs

Taking TLR9 downstream signaling pathways into
consideration, CpG ODNSs can not only promote the secretion
of type I IFNs but also the production of some pro-
inflammatory cytokines, such as IL-6. Therefore, TLR9 may
contribute to anti-tumor effects as well as tumor-promoting
signals [40-43]. Due to the dichotomous role of TLRY, it is
important to develop a better understanding of its signaling
pathway and the regulatory mechanisms of downstream
molecules. This may provide new approaches to improve the
ellcacy of current immunotherapies and decrease tumor-
promoting inflammatory effects.

According to current research, the expression of TLR9 can be
divided into two parts. While full-length TLRY is expressed
predominantly on the cell membrane, multiple cleaved forms
are expressed mainly in the endoplasmic reticulum of pDCs
and B cells. TLR9 expressed on the surface of B-cell
lymphocytes can inhibit the activation of endosomal TLRO9
[44,45].

When stimulated by CpG ODNSs, TLR9 initiates the activation
of a family of IL-1 receptor-associated kinases (IRAKS),
including IRAK-1, -2, -4 and -M, after inducing the
recruitment of myeloid differentiation antigen 88 (MyDS8S).
The sequential activation of IRAKs induces an interaction with
tumor necrosis factor associated factor (TRAF)-6 resulting in
activation of nuclear factor-xB (NF-xB) and mitogen-activated
protein kinase. This will cause the most important cellular
responses of inflammation or apoptosis [46]. In addition, NF-
kB activation can upregulate many tumor-promoting
inflammatory cytokines. These cytokines will promote NF-kB
activation in a positive feedback loop [41]. Therefore,
identifying negative regulators of NF-kB activation, such as
the over-expression of TRIAD3A, an E3 ubiquitin-protein
ligase, may provide a target to avoid excessive inflammation
promoting the development of cancer [47].

On the other hand, direct interactions among MyD88, TRAF-6,
and IRF-7 are required in TLR9-mediated pDC activation.
Furthermore, IRAK-1 and -4 can activate IRF-7 which is
required for the production of IFN-a [48].Thus, inhibitors of
these molecules may disrupt anti-cancer effects. For example,
transmembrane protein single immunoglobulin interleukin-1-
related receptor can suppress TLRY activation and enhance
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sensitivity to endotoxin shock [47]. Over-expression of MyD88
can cause the formation of MyD88 homodimers and inhibit
downstream MyD88-dependent signaling pathways by
preventing IRAK-1 phosphorylation through IRAK-4 [49,50].
Similarly, suppressor of cytokine signaling 1 can inhibit the
TLR9Y signaling pathway by suppressing IRAK-1 expression
[51]. IRAK-M, dependent on TGF-B, is also a negative
regulator of TLR signaling that can promote the evasion of
host immune surveillance by upregulating the rate of
immunosuppressive M2 phenotype macrophages [52,53]. And
IRAKs are deubiquitylated by A20 which blocks TLR9
signaling [54]. In addition, the interaction of p47 (phox) with
TRAF4, which inhibits TRAF-6, plays a suppressive role in
TLR9-mediated signaling [55].

Overall, owing to the biphasic modulation of TLR9 signals that
affect the balance of the immune system, suppressing negative
regulators related to the signals of IFN-a production, and
simultaneously activating negative regulators related to pro-
tumor inflammatory signals may have anti-cancer effects.
Although some molecules that negatively regulate TLR9
signaling have been found, their roles in tumor immunotherapy
are just starting to emerge.

Clinical applications of TLRY agonists

Available data indicate that TLRO activation can harness the
immune regulatory balance in cancer immunotherapy. There
are some pre-clinical and clinical trials using CpG ODNs as an
immune adjuvant to enhance the anti-tumor effects in some
cancers as follows. Furthermore, CpG ODNs in combination
therapies to promote pDC maturation may provide new
insights into cancer treatment. However, TLR9 activation can
also cause pro-inflammatory reactions. Thus, the heterogeneity
of TLRY signaling pathways in various cell types needs to be
further considered and the impact of TLR9 agonists on anti-
tumor responses should be evaluated.

CpG ODNSs as Immune adjuvants

Although CpG ODNs have no direct pro-apoptotic effect on
multiple myeloma cells, in some cases they can cause immune
activation. When co-cultured with pDCs, CpG ODNs induce
the maturation of pDCs that then secrete IFN-a and IFN-A
which further induce G2-phase arrest in MM cells [56,57].
Besides, CpG ODNSs can not only induce pDC maturation but
also activate NK cells. Intravenous administration of CpG
7909 at doses of 0.01 to 0.64 mg/kg three times a week
activates NK cells in patients with refractory non-Hodgkin
lymphoma [58]. Because the activation of pDCs by CpG
ODNs can enhance their antigen presentation activities,
combination therapies with vaccines may improve the outcome
in tumor patients. However, despite the fact that CpG ODN5s
treated with a vaccine-derived peptide can improve the
production of peptide-specific T cells as well as cytokines
(such as IFN-a, TNF-0, and IL-2) in vitro, there is no
significant difference in the clinical outcomes between
experimental and control group patients when comparing
median progression-free and overall survival times with
peptide vaccines including Melan-A/MART-1 peptide, gp100,
MelQbG10, ISA-51, MAGE-A3, and Wilms’ Tumor nuclear

22

Cui/Bai/Zhou/Chen/Chen

protein 1 [59-61]. Nevertheless, CpG ODNs can improve the
killing effects of cytotoxic immune cells on tumor cells
compared with using other therapies alone.

Many studies have shown that promoting the delivery of CpG
ODNs to the tumor site may improve the anti-tumor effects.
For example, some researchers found that intra- or peri-
tumoral injection increased the infiltration of myeloid-derived
suppressor cells, which will enhance the generation and
activity of M1 macrophages. In that circumstance, the
tumoricidal activity of M1 macrophages, and localization and
the antigen-presenting ability of pDCs, would also be
increased. Thus, compared to systemic injection of CpG
ODN:s, intra- or peri-tumoral injection was more effective
[62,63]. Furthermore, compared with systemic administration,
intrapulmonary delivery of CpG ODNs in non-small cell lung
cancer decreased Treg- and M2 macrophage-mediated
immunosuppression, increased the number of Ml
macrophages, and prompted CD4+ T cells to differentiate into
CD8+ T and Thl cells [64].

CpG ODNs combined with other therapies

Chemotherapy, radiotherapy, and targeted therapy have shown
powerful therapeutic effects on tumors. Combination therapies
with CpG ODNs may improve these effects by activating
immune cells. For example, combined therapy of CpG ODN5s
with cyclophosphamide (CTX) showed better outcomes
inpatients with lymphoma, compared with CpG ODN or CTX
therapy alone. Moreover, CTX inhibited the infiltration of
Tregs into tumor sites, which enhanced the Thl and cytotoxic
lymphocyte responses [65]. Similar synergistic effects have
been discovered in unresectable stage III and IV melanoma,
advanced non-small cell lung cancer, and glioma [66-68].

Otherwise, CpG ODNs combined with radiotherapy result in a
high complete tumor remission rate by increasing tumor-
reactive memory CD8+ T cells, protecting normal B cells from
irradiation-induced cell death, and enhancing M1 macrophage
viability [69-71]. Additionally, in a phase I/Il study, CpG-
based in situ tumor vaccination improved radiotherapy
outcomes with a high complete tumor remission rate, and
induced systemic anti-lymphoma clinical responses by exerting
direct effects on human malignant B cells and increasing
tumor-reactive memory CD8+ T cells [72]. When combined
with targeted therapies, CpG ODNSs can increase the el cacy of
rituximab by promoting the activation and expansion of Fc
receptor-bearing NK cells. The upregulated CD20 expression
mediated by CpG ODNs might further promote the killing
effects of rituximab [58,73].

Perspective

Despite the fact that TLR9 agonists have shown favorable
activity in many clinical trials, the results of several trials are
disappointing. In particular, clinical trials in recurrent or
metastatic squamous cell carcinoma of the head and neck [74],
and in non-small cell lung cancer [12], have yielded poor
results. The magnitude and duration of responses to
immunotherapies are affected by the tumor, the host, and the
microenvironment. Because of these discouraging results, the
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application of CpG ODNs should be individualized, and more
attention should be paid to the CpG ODN type, the treatment
time point, and the application strategy of CpG ODN therapy.
Furthermore, the heterogeneity of TLR9 expression, the
distinctive responses in different cancers, and the influence of
factors as well as mechanisms involved in immune
homeostasis should be considered in cancer immunotherapies.

Although TLRY activation can harness the immune regulatory
balance in cancer immunotherapy, the increased pro-tumor
inflammation and the over production of type I IFNs with the
risk of causing autoimmune disease mediated by TLR9 should
also be considered. By exploring the mechanism of pDC
maturation, clarifying pivotal molecules that promote pDC
maturation will help enhance CpG ODN-induced anti-tumor
effects, in order to perform an optimal cancer immunotherapy
with limiting tumor-promoting inflammatory effects and
enhancing cytotoxic lymphocyte responses related signals
without causing autoimmune reaction.

The comprehensive control of the immunosuppressive TME
will significantly increase the effectiveness of current
immunotherapies. As the concept of “cocktail therapy” has
evolved [75], studies show that TME can sensitize cancer cells
to DNA-damaging chemotherapies [76], cancer radiotherapy
may be immunogenic [77], and antibody—CpG conjugates can
improve immune stimulatory activity [78]. Therefore,
combination therapies will become a new trend and the
complexity of identifying optimal dosing levels and schedules
for each component should also be taken into account, with
better harnessing the immune regulatory balance of Toll-like
receptor 9 agonists in cancer immunotherapy.
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Figure 1. Toll-like receptor 9 agonists in cancer immunotherapy.

Roles of Toll-like Receptor (TLR) 9 in Disease
Status

TLRY plays a critical role in homeostasis of the immune
system. Plasmacytoid dendritic cell (pDC) maturation shifts the

balance from immunosuppression (dark segment) to
immunoactivation (light segment). For example, in
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autoimmune diseases and acute inflammation, TLR9 agonists
can induce mature pDCs to secrete inflammatory cytokines
(such as type I IFNs) that further enhance the positive immune
effects to promote type 1 T helper (Thl) cell and cytotoxic
lymphocyte responses. On the other hand, pDCs may be
deleted or become hypo-responsive to secrete type I IFNs, and
promote CD4+ T cells to differentiate into activated Tregs in
chronic inflammation and cancer.
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