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Abstract 
The saphenous vein (SV), a blood vessel superficially located in the leg, is the most commonly used graft in 
patients requiring coronary artery bypass surgery (CABG). Using conventional surgical methods of preparing 
the SV this vessel is subjected to considerable trauma that influences graft performance. While much interest 
has focussed on reducing damage to the veins’ innermost surface (the endothelium) during CABG, preservation 
of its outer layer (the adventitia) has been largely neglected. Within the adventitia are located the vascular 
nerves and vasa vasorum, a microvascular network providing the vessel wall with oxygen and nutrients. An 
atraumatic, no-touch, technique of harvesting the SV has been introduced that dramatically improves the 
performance of this vessel when used in patients undergoing CABG. When preparing the SV by the no-touch 
technique the vessel is removed complete with its cushion of surrounding tissue and in doing so the vein’s 
normal architecture is maintained and the adventitia remains intact. There is evidence that the improved 
patency of no-touch grafts is associated with preservation of structures in the SV adventitia. In this mini review 
we discuss the preparation of vessels used as bypass grafts in patients with heart disease, the use of synthetic and 
tissue-engineered graft materials and the potential importance of retaining or mimicking normal vessel 
structure.   
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Introduction 
The two vessels most frequently used as bypass grafts in patients requiring revascularization of ischaemic myocardium 
are the saphenous vein (SV) and the internal mammary artery (IMA). These vessels are often prepared in such a way that 
they are separated from their surrounding tissue and isolated to form a tube, or conduit, suitable for restoring blood 
supply to the affected region of the heart [1-3]. More recently, synthetic or tissue-engineered materials have been 
prepared in an effort to provide alternative means of restoring arterial blood flow to ischaemic tissues i.e. dog carotid 
and femoral arteries or primate abdominal aorta [4, 5]. If successful, such materials would reduce the undesirable effects 
of harvesting vessels required for i.e. coronary artery bypass surgery (CABG) (scarring, cosmesis and infection at the 
site of vein harvesting) and provide readily available ‘connectors’ that may be used for revascularisation procedures. 
 
Autologous grafts 
 
The SV is the most commonly used conduit for CABG yet its performance is poor compared with the IMA, the ‘gold 
standard’ [6, 7]. The major advantage of the SV is that it is expendable as deeper vessels maintain blood flow to 
superficial tissues after its removal; the extensive length of this vein allows for multiple grafts; its superficial position 
renders it easily accessible. The major cause of early SV graft failure is due to thrombotic occlusion following 
endothelial damage caused by surgical trauma at harvesting [8].  
 
Here, endothelial denudation exposes the vein intima basement membrane to the circulating blood and platelet 
aggregation occurs as a result of reduced endothelium-derived factors such as NO and prostacyclin [9]. 
 
During conventional preparation of the SV in patients undergoing CABG the vessel is stripped of its surrounding 
cushion of tissue including the adventitia (Figure 1). Within this layer are the situated the vascular nerves and the vasa 
vasorum [10-21], which play an important role in maintaining a healthy vessel. The question therefore arises, does the 
damage to SV innervation during harvesting effect graft performance and therefore tissue perfusion?  



 

 
 
Figure 1. Comparison of SV preparations for CABG.  
 
Top image. An example of a conventionally-prepared SV (left in top image) for use in CABG. The surrounding tissue 
has been removed. A branch that has been tied off can be seen on the left side of the main vessel just below the vessel 
lumen. A no-touch harvested SV (right in top image) that has been removed complete with its surrounding cushion of 
tissue, much of which is perivascular fat.  
 
Lower images. These show transverse sections of conventional (left) and no-touch (right) harvested SV that were stained 
for collagen. The lumen of the conventional vein is collapsed and the media is thin due to the high-pressure intralumenal 
distension used to overcome spasm. In addition, a high proportion of the vessel’s outermost layer has been damaged or 
removed. The no-touch vein retains a normal architecture where the intima is thrown into folds (as it has not been 
distended), the media remains thick and the pronounced adventitial layer remains intact. Adventitial vasa vasorum that 
can be clearly seen in these veins are absent or damaged in conventional vein preparations. 
 
In SV, perivascular nerves are usually located in the vicinity of the vasa vasorum system, suggesting a functional 
relationship between these two networks. Figure 2 demonstrates a close anatomical relationship between vasa- vasorum 
and perivascular nerves in the adventitia of the SV wall [also see 21].  
 
Adventitia: vasa vasorum: perivascular nerves 
Our understanding of the influence of the vasa vasorum and the perivascular nerves within the adventitia and on the 
physiology of SV is still limited. Nonetheless, recent studies strongly suggest that preservation of the nutrient role of the 
vasa vasorum might be crucial to the performance of the SV as an autologous graft in the early stages after implantation 
into the coronary circulation [15]. Previous experimental studies showed that occlusion of the vasa vasorum e.g. of 
rabbit carotid artery [22] causes neointimal hyperplasia and a reduction in lumen diameter, features observed in coronary 
artery disease, stroke and peripheral artery disease. It has also been shown that adventitial removal of the rabbit carotid 



 
artery caused early signs of atherosclerosis and that this was reduced on the appearance of a ‘neoadventitia’ [23]. 
Therefore, preservation of the adventitia in conduits used as grafts may play an important role in their ability to restore 
and maintain blood supply to ischaemic tissue. In this respect, preservation of the perivascular nerves, the vasa vasorum 
and vasa nervorum may be crucial to the performance of autologous grafts, in particular the SV, which as an intact 
vessel possesses a pronounced adventitia containing an extensive network of vasa varoum and vascular nerves.  
 
It is highly possible that the adventitial perivascular nerves of human SV contribute to the “healthy” functioning of the 
vasa vasorum, and hence the vein wall. It has been shown that the sympathetic signalling in human SV is complex [24-
34]. The vasa vasorum of the SV is densely innervated by sympathetic nerves [21] the presence of vasa vasorum-
associated vascular smooth muscle cells implies that the vasa vessels actively regulate their own tone. However, when 
harvesting the SV for CABG perivascular nerves are disconnected from their autonomic ganglia (mostly pelvic ganglia) 
during vein dissection from the leg. It is also unclear whether these nerves remain intact after harvesting procedures and 
what impact this denervation may have on SV graft performance. According to commonly accepted opinion such 
denervation would be expected to lead to nerve degeneration. Our own observations suggest that both damaged and 
undamaged varicosities, at least of the sympathetic nerves showing positive reaction for tyrosine hydroxylase (TH), are 
observed in the SV wall during harvesting [21]. Recent observations also suggest that SV graft patency is improved 
when mechanical damage to the vein is minimised during harvesting for CABG. These facts strongly support the 
importance of preserving all vein wall components, in particular the adventitia and associated structures such as the vasa 
vasorum and perivascular nerves. It is likely that, apart from surgical trauma at harvesting, distension-induced trauma 
causes constriction of the vasa vasorum  
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Figure 2. SV adventitial perivascular nerves and vasa vasorum. Images A and B show light microscopy of adventitial 
perivascular nerves and vasa vasorum immunolabelled (arrows) for NF200 and CD31, respectively (x 40 original 
magnification). Image C illustrates the proximity of adventitial vasa vasorum vessel (venule) and autonomic 
perivascular nerves as seen at the electron microscope level. In the vessel note endothelium (En), lumen (lu) and an 
erythrocyte (Er). Note that the autonomic nerves consist of Schwann cells (Sch) and enclosed axon profiles (Ax); 
fibroblast (F) and collagen (col) are also seen. x 11,500. Image C is from [18], which is kindly acknowledged.  
 
and subsequent reduction in blood supply to the SV graft wall [35].  
 
While present attention is generally focussed on the vessel’s innermost surface and maintaining a non-thrombotic/patent 
lumen, how might the preservation of the outermost vessel layer impact on graft performance? Certainly while there is 



 
increasing evidence that this may be an important consideration when using autologous grafts, there is little, if any, 
attention to the potential importance of adventitial influences on synthetic graft materials. 
 
Synthetic graft materials  
Since the outermost layer of autologous grafts, including the adventitia, of SV effects graft performance should this be 
considered when developing synthetic materials? An intriguing and important question is, can the SV (and also the 
internal mammary and gastroepiploic arteries) harvested “with normal architecture” for CABG, be substituted by 
synthetic grafts?  
 
There has been considerable interest in recent years into the potential use of ‘manufactured’ graft materials. Clearly, 
synthetic grafts that can be used ‘off the shelf’ are desirable since the need for surgical removal or in situ grafting of 
blood vessels is obviated. The most popular synthetic materials that are already used in cardiovascular surgery including 
bypass surgery are polymers: Dacron™ and polytetrafluroethylene (PTFE) with the more recent introduction of 
nanotechnology as a potential technique for producing grafts. In addition to these approaches considerable effort has 
been spent into the study of tissue-engineered conduits using a variety of cell types harvested from patients requiring 
imminent revascularisation due to atherosclerotic occlusion of coronary, carotid or popliteal arteries. To this end the 
main focus has been coating potential graft materials with endothelial cells (‘seeding’) in an attempt to prevent 
thrombotic occlusion that frequently occurs soon after implantation. While such attempts at improving graft patency 
concentrate on the development of a non-thrombotic intima, its outer surface - the adventitia - receives little attention.  
 
So far, studies into the use of prosthetic grafts in CABG patients requiring regrafting have proved disappointing 
primarily due to their thrombogenicity and subsequent intimal hyperplasia particularly at regions of anastomosis. 
Patency rates using PTFE in CABG patients were only 14% at 45 months [36]. The formation of intimal hyperplasia is 
believed to be a result of compliance mismatch at the anastomoses between the viscoelastic blood vessel and the 
comparatively non-elastic grafts. These disappointing results have prompted the development of superior grafts made 
with polymers such as polyurethanes (PU) that are said to be more compliant and reseal after use. These materials are 
still under clinical trial, so far with no long-term patient data available.   
 
Tissue Engineering 
This approach involves the development of “fully engineered grafts made from a scaffold and mixtures of 
VSMCs/collagen and endothelial cells” [5]. This technique takes several weeks to prepare a potential graft and cannot 
therefore be applied within a time frame suitable for emergency procedures. This method has not as yet undergone 
clinical trial and the long-term effectiveness and patency rates are not yet known. However, it has been suggested that 
this method of vascular tissue engineering will not be accepted until results superior to autologous grafts have been 
demonstrated in clinical trials. At present, a combination of prosthetic grafts with two-stage seeding appears to produce 
optimal results. The development of a more rapid endothelial cell lining for the graft is needed before these grafts are a 
realistic option in emergency cases. 
 
Interestingly, there are several reports of the appearance of vasa vasorum in experimental tissue-engineered grafts [4, 5]. 
As in the SV these microvessels become evident once the graft wall reaches a critical thickness. Although there may be a 
gradual change in the lumen size of the vasa vasorum of tissue engineered grafts it is not clear if such grafts become 
innervated or if these vasa vasorum are simply passive channels. Consequently, the second by second neural influences 
that occur in native vessels may or may not influence the vasa vasorum of tissue-engineered vessels. This is a similar 
situation to SV grafts for used for CABG as these vessels are also denervated at harvesting. It is not known what effect 
this denervation has on graft performance although there is evidence that “neoinnervation” occurs in close proximity to 
areas exhibiting neovascularization in a porcine vein graft model [37, 38]. Perhaps there is eventual re-growth of host 
vessel nerves (e.g. coronary artery) with the graft and that this “reconnection” influences the long-term outcome of 
CABG. Studies into the innervation of autologous bypass conduits as well as synthetic graft materials are to be 
recommended.   
 
Conclusions 
We are still at the very early stages regarding the development of synthetic/tissue-engineered graft materials suitable for 
CABG. The main obstacles are associated with the thrombogenicity, compliance and other factors that affect the 
potential of these would be grafts when compared to autologous vessels that are currently in use. The SV is therefore the 
vessel of choice when the IMA is unsuitable or has already been used for the purpose. When handled with minimal 
vascular trauma at harvesting the SV may well serve as a conduit providing an improved graft patency in the coming 
years until suitable synthetic grafts are developed for patients requiring bypass surgery. 
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