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Abstract

Accurate diagnosis of cancer is of great importance due to the global increase in new cancer cases.
Cancer researches show that diagnosis by using microarray gene expression data is more effective
compared to the traditional methods. This study presents an extensive evaluation of a variant of Deep
Belief Networks - Discriminative Deep Belief Networks (DDBN) - in cancer data analysis. This new
neural network architecture consists Restricted Boltzman Machines in each layer. The network is
trained in two phases; in the first phase the network weights take their initial values by unsupervised
greedy layer-wise technique, and in the second phase the values of the network weights are fine-tuned by
back propagation algorithm. We included the test results of the model that is conducted over microarray
gene expression data of laryngeal, bladder and colorectal cancer. High dimensionality and imbalanced
class distribution are two main problems inherent in the gene expression data. To deal with them, two
preprocessing steps are applied; Information Gain for selection of predictive genes, and Synthetic
Minority Over-Sampling Technique for oversampling the minority class samples. All the results are
compared with the corresponding results of Support Vector Machines which has previously been proved
to be robust by machine learning studies. In terms of average values DDBN has outperformed SVM in
all metrics with accuracy, sensitivity and specificity values of 0.933, 0.950 and 0.905, respectively.
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Feature selection.
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Introduction
Cancer is the second-leading cause of death in the United
States, coming after the heart disease [1]. The name cancer
refers to more than a hundred diseases characterized by out of
control growth and multiplication of the cells. For the purpose
of cancer diagnosis, use of microarray technology along with
computer aided methods is increasing rapidly. DNA microarray
technology generates features for monitoring expression of
genes on genomic level for researching cancer. Diagnosis from
such a microarray gene expression data is shown to be more
effective compared to traditional methods [2-4]. Analysis over
gene expression data for the purpose of diagnosis can be done
by using additional laboratory experiments, but such
experiments are costly and labor intensive. Alternatively, as a
replacement to experiments for diagnosis methods from
artificial intelligence can also be utilized to perform computer-
based diagnosis of the gene expression data. As computer-
based diagnosis has advantages over laboratory experiments
such as low cost and diagnosis speed, research over computer-
based methods has been gaining attention and remains essential
[5].

In the literature, several machine learning techniques are
evaluated for computer-based diagnosis by using gene
expression profiles. The first study that belongs to Golub et al.
[6] is about clustering Acute Myeloid Leukemia (AML) and
Acute Lymphoblastic Leukemia (ALL) data by self-organizing
maps (SOM). The subsequent studies include specific
algorithms with application to specific gene expression profiles
[7-9] and comparative analysis of different methods [10-13].
Support Vector Machine (SVM) is the most prominent of the
methods. Its ability of handling high dimensional data, lead to
successful application for classification of microarray gene
expression data [14-18]. Pirooznia et al. [19] achieved a
comparative study among several machine learning methods
on microarray gene expression data from different cancer
types. They employed methods of SVM, RBF Neural Nets,
MLP Neural Nets, Bayesian Network, Decision Tree and
Random Forest methods and in almost all cases SVM
outperformed the others. This is the reason that motivated us to
choose SVM as a baseline method while evaluating the
performance of discriminative deep belief network (DDBN) in
cancer classification.
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In one of the few studies that utilized deep learning approach
with microarray data, Gupta et al. [20] demonstrated the
empirical effectiveness of using deep autoencoders as a pre-
processing step for clustering of gene expression data. Another
contribution was made by Fakoor at al. [21] that reported
unsupervised feature learning can be used for cancer detection
and cancer type analysis from gene expression data by deep
stacked autoencoders. Ibrahim et al. [22] proposed a deep and
active learning based method called MLFS (Multi-level gene/
MiRNA feature selection) for selecting genes from expression
profiles. Their experiments show that the approach
outperforms classical feature selection methods in
hepatocellular carcinoma, lung cancer and breast cancer. In
another study deep models are applied to functional genomic
data to build low dimensional representations of multiple
tracks of experimental functional genomics data [23]. Briefly,
relevant literature studies that utilized deep learning approach
in microarray data generally aimed at finding features or
reducing dimensionality of the data in an unsupervised manner.
This study diverges from them in that it aims at evaluating a
deep learning method, namely Discriminative Deep Belief
Network (DDBN), in supervised classification of cancer cases
for the purpose of diagnosis.

While analyzing microarray gene expression data, a problem
that should be handled is the high dimensionality of the data
which causes the classifier to be overfitting to the data and
increases the computational load. Even with limited number of
samples in the data, there are thousands of features, i.e. genes.
Therefore, prior to the classification, feature selection is
essential for identifying the subset of genes which are relevant
for predicting the classes of samples [24-27]. Additionally,
imbalanced class distribution in the data is also another
handicap for efficient training of a classifier, as well [28,29].
One way to deal with this problem is using oversampling
techniques such as the Synthetic Minority Over-Sampling
Technique (SMOTE) [30-32]. Blagus and Lusa [33] performed
feature selection before using SMOTE in high dimensional
gene expression data showed that substantial benefit can be
obtained by use of SMOTE along with k-nearest neighbors
classifier.

Being a recent approach, deep learning has not been
investigated in application of classification of microarray gene
expression data in the literature as comprehensively as it
should have been. Therefore, research over the deep learning
approach in this field is quite inadequate and as well as
promising with the consideration of the fact that it is a proven
method in other fields of machine learning [34-40]. In this
study, our main goal is to show that DDBN is capable of being
a successful decision support model for cancer data. For this
purpose, three microarray gene expression datasets are
analyzed: laryngeal cancer, bladder cancer and colorectal
carcinomas. We compare the results of Discriminative Deep
Belief Network (DDBN) with SVM in terms of accuracy,
sensitivity, specificity, precision and F-measure metrics. In the
preprocessing phase, we employed Information Gain (IG)
feature selection method for discovering predictive genes, and
SMOTE to overcome the problems aroused by the imbalanced

nature of the data. Therefore, we propose a general model
based on DDBN to diagnose cancer cases by using gene
expression data. This model attempts to keep the diagnosis
performance stable even with datasets containing imbalanced
class distribution and high number of genes.

Materials and Methods

Description of the datasets
Microarray gene expression datasets of laryngeal cancer,
bladder cancer and colorectal cancer are taken from BioGPS
portal [41]. BioGPS is a customizable and extensible gene
annotation portal and also a source for information about
genes. It is supported by the U.S. National Institute of General
Medical Sciences. It presents its gene annotation data to
scientists by a flexible search interface. Additionally it has a
role of content aggregator of many other gene annotation
portals; therefore most of its content is obtained from other
online resources.

Table 1. Class distributions and descriptions for microarray gene
expression data.

Type of
microarray

gene expression
data

# of
genes

Negatives Positives

# of
samples description # of

samples description

Laryngeal cancer
[42] 22284 75

no
recurrence
of disease

34 recurrence
of disease

Bladder cancer
[43] 54676 40

non-
cancer
urothelial
cells

52
urothelial
cancer
cells

Colorectal cancer
[44] 54676 57

without
lymph
node
metastasis

32
with lymph
node
metastasis

Laryngeal microarray gene expression data was obtained using
Affymetrix U133A Genechips. Tumor tissues of 66 laryngeal
cancer patients were profiled and 22284 gene expressions are
obtained. By adding age, duration of DFS (disease free
survival) in months and the grade of the cancer a total of 22287
featured dataset is obtained.

Using Affymetrix U133 Plus 2.0 arrays platform bladder
cancer gene expression data were obtained from exfoliated
urothelia sampling for the evaluation of patients with suspected
bladder cancer. The data was collected from 92 subjects and a
total of 54676 genes are used. The aim of researchers was to
identify urothelial cell transcriptomic signatures associated
with bladder cancer.

The expression profiles of colorectal cancer were obtained
from 89 patients using Affymetrix Human Genome U133 Plus
2.0 arrays. The aim of the researchers in collecting this data is
to identify whether there is lymph node metastases in patient or
not, because the existence of lymph node metastases give the
physicians an idea about the prognosis of the colorectal cancer.
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Table 1 summarizes the properties of three microarray gene
expression data.

Discriminative deep belief network (DDBN)
DDBN is a variant of Deep belief network (DBN) approach
introduced by Hinton et al. [34]. A DBN is probabilistic
generative model constructed by layers of Restricted Boltzman
Machines (RBM). It can be trained by using Contrastive
Divergence algorithm [34], in an unsupervised fashion. After
completing the training of each layer, another RBM is
concatenated as a new layer and trained by taking output of the
previous layer as input. Required number of layers are obtained
by adding one after another. This process is defined as greedy
layer-wise learning method of DBN that provides
an initialization for weights for network, in contrast to the
traditional random initialization of neural networks.

Figure 1. A restricted boltzman machine.

As represented in Figure 1, an RBM consists of a layer of i
binary visible units and j binary hidden units having
bidirectional weighted connections. The energy of a
configuration of this network can be defined by

� v,   h = −∑� ����−∑� ��ℎ�−∑�∑� �����ℎ� (1)
where ai is bias value of visible unit i, and bj is bias value of
hidden unit j and wij is the weight between them. The
probability of a visible vector v is

� v = 1�∑h �−� v, h (2)
where Z is the normalizing factor calculated by summing all
possible configurations of visible and hidden units. After
observed variables are fed to visible units as input, a stochastic
unit in a RBM has the probability of having value of 1

� ℎ� = 1 v = �(��+∑� �����) (3)
where σ(x)=1/(1+e-x) By using binary states of hidden units,
the reconstructed binary states of visible units are

� �� = 1 h = �(��+∑� ℎ����) (4)

A DBN is obtained by a stack of RBMs, where the hidden
layer of an RBM is the visible layer of the subsequent RBM. In
the multilayered architecture of the DBN, there is a visible
layer taking the input data to transmit it to the hidden layers.
Each layer of the DBN is trained according to the training
procedure of RBM. After training of RBM1 is completed,
hidden units of RBM2 is added to the model. The hidden
activations of RBM1 are fed to RBM2 as visible layer of
RBM2 and the procedure is repeated for RBM3 and so on as
represented in Figure 2A.

Figure 2. (a) A traditional DBN composed of three layers of RBM. (b)
A DDBN composed of a visible unit, two RBM layers and an
associative memory to output the target values.

If the model will be used as a discriminative model as
represented in Figure 2B, the fine tuning procedure is
performed by using back propagation algorithm. Firstly, a new
layer which is label units of the data is added like the output
layer of a neural network for producing the desired outputs, i.e.
o1. Therefore, the weights of DDBN model are adjusted
according to the difference of system output and actual
expected values. In this model the last two layers are called
associative memory for associating the lower layers to the label
value. The only thing one should pay attention is to choose the
correct learning rate. Because a large value of learning rate
change the pre-determined weights a lot, and a small value
causes a slow convergence.

Support vector machine (SVM)
SVM is a supervised machine learning method that depends on
the statistical learning model proposed by Cortes and Vapnik
[45] to use with classification and regression tasks. The
statistical learning theory, which is also known as the Vapnik-
Chernovenkis (VC) theory, analyses the problem of estimating
the function from the training data. The models of statistical
learning may be either parametric or nonparametric. SVM is a
nonparametric model meaning that it has no assumptions on
probability distributions of the input data and thus the model
structure is not specified in advance.

In SVM classification, the inputs are defined as n-dimensional
feature vectors which are mapped to m-dimensional feature
space by kernel functions, where m>n. Inputs are classified
linearly by a hyperplane in such a higher dimensional space.
By using the training data, SVM learns a decision surface, i.e.
the hyperplane that separates the input vectors into two
different classes for binary classification. Therefore the aim of

Discriminative deep belief networks for microarray based cancer classification

Biomed Res- India 2017 Volume 28 Issue 3 1018



SVM classification is to design an optimum hyperplane� � =  ��� + �0, where �  is vector of weights and �  is the

input vector. The �  vector determines the generalizing ability
of learning. There can be more than one solution in
determining the hyperplane but the best one leaves maximum
margin from both classes. This margin is determined according
to the closest data points called support vectors. For input
vectors from class 1 the hyperplane function produces values
larger than 1, and for input vectors from class 2 it produces

values smaller than -1.
� � ≥ 1,   ∀� ∈ �����   1� � ≤ − 1,   ∀� ∈ �����   2 (5)

Let Z be the margin distance from support vectors of one of the
classes to the hyperplane, then� = � �� = 1� (6)
where we can see the total margin from both classes is 2/ �
which must be maximized by minimizing the term �  for
maximum separability. In case the two classes are non-
separable, the amount proportional to number of misclassified
samples must also be minimized as in Equation 7,min� ,�0, �12 � 2+ �∑1

� �� (7)
where ξi is the error parameter determined by input vectors that
are not separated linearly and located on the wrong side of
hyperplane. C is a predetermined constant parameter to control
the penalty for misclassification. If this value is too small,
many input vectors of misallocated are accepted, otherwise
very few input vectors on wrong side are required.

The search for the optimum hyperplane in SVM is a nonlinear
optimization problem solved by using Karush Kuhn Tucker
conditions which use Lagrange multipliers i ≥ 0.� � ,�0, � = 12�2− ∑� = 1� ��(��((����+ �0)− 1) (8)
where yi is the corresponding class label of � �.
What makes the SVM approach being effective is the kernel
functions that map the input vectors to feature vectors. By an
appropriate mapping, data can be transformed to another
dimensionality in which it can be separated by a hyperplane.
Quadratic, polynomial, sigmoid, linear and radial basis
functions are some common kernel functions.

Information gain for gene selection
Information Gain (IG) measures the reduction in uncertainty
about a class variable, therefore it is entropy based filter
method. Formally, assume Y is the class attribute of a data set
and X is a given feature, i.e. gene. The IG of X is the reduction
of uncertainty of Y values when X values are known. This
uncertainty is measured as H(Y), the entropy of Y. IG of X is

the difference between entropy of Y and entropy of Y after X
values are observed, and is calculated as in Equation 9.

IG(Y;X_=H(Y)-H(Y|X)→(9)

Entropy of Y is calculated with Equation 10.

� � = −∑� ∈ � � � ���2 � � (10)
where y is a value of Y class feature, and p(y) is the probability
of Y=y. And entropy of Y after X values are observed is
calculated as:� �|� = − ∑� ∈ �� � ∑� ∈ ��(� �)���2 � �|� (11)
Synthetic minority over-sampling technique
(SMOTE)
Chawla et al. [30] proposed the SMOTE which resolves the
imbalanced class distribution problem by oversampling
minority class instances in the data. In classification tasks, the
problem arises when the classifier biases towards a majority
class when learning from an imbalanced data. In the literature,
it is shown that classifiers are better in balanced datasets
compared to their performances in imbalanced ones [31,32].
SMOTE creates new instances from a minor class based on the
idea that closest vectors have the same class value. Each
instance is considered as a vector, and the closest vectors are
determined by k-nearest neighbors algorithm. A new sample is
generated along the line between the minority sample and a
neighbor selected from k-nearest neighbors randomly. A
difference vector is calculated by taking the difference between
the minority class sample x and the neighbor sample xn.
Finally, a new synthetic sample vector xnew is generated by:���� = �+ � − �� � (12)
where γ is a random value between 0 and 1. The output of
algorithm is the synthetic samples that count to a percent of
number of minority samples which is a parameter the
algorithm takes. In the case of microarray gene expression data
classification, especially laryngeal and colorectal data are
imbalanced. However SMOTE is applied to all three data, the
aim is to minimize the potential misclassification caused by an
unbalanced structure of data.

Results and Discussion
In order to measure the classification performance of the deep
learning approach, experiments are conducted over the three
datasets mentioned previously. The metrics of accuracy,
sensitivity, specificity, precision and F-measure are used to
evaluate the classification capacity. All these experiments were
carried out using the ten-folds cross validation technique. By
this technique the model is validated by taking the average of
ten tests each of which is executed by using one out of ten
subsets of the dataset for testing and the remaining parts for
training. SVM is employed with polynomial kernel which is
determined according to comparative pre-studies on different
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kernels. As for DBN, we used a two layered structure with 50
and 10 hidden nodes in the first and second hidden layers,
respectively. Training of the network is achieved with a
learning rate of 0.04 and a momentum of 0.9.

Before the deep analysis of DDBN and SVM comparison,
Table 2 is presented that enables to comprehend the reason of
selection of methods. In Table 2 the methods of Random Forest
and k-Nearest Neighbors are included besides DDBN and
SVM. The values are accuracies of classification of each
method after application of IG and SMOTE preprocessing
steps. According to Table 2, Random Forest generates
considerable results, but in a total assessment performance
values of DDBN and SVM are better than Random Forest and
k-NN.

Table 2. Accuracies of classification of four methods.

Data DDBN Random
Forest

SVM k-NN

Laryngeal 0.944 90.21 0.937 73.43

Bladder 0.947 92.42 0.962 87.12

Colorectal 0.909 87.60 0.826 78.51

Table 3, Table 4 and Table 5 summarize the classification
results of DDBN and SVM for laryngeal, bladder and
colorectal microarray gene expression data respectively. In
each of the tables, results are grouped into four categories. First
category is the no preprocessing (no prep.) category in which
each data is directly classified by DDBN and SVM without any
preprocessing applied to the data. The second category
represents the results of classification of DDBN and SVM after
selecting discriminative genes of cancer data by the IG filter.
As IG produces a score for each feature, we took the top
ranking features exceeding 0.1 threshold score, therefore for
laryngeal, bladder and colorectal microarray gene expression
data, 251, 300 and 322 features are used, respectively. In the
third category, the results are based on SMOTE based
preprocessing while the last category presents the results
obtained by applying both IG and SMOTE subsequently. The
SMOTE algorithm produces new synthetic instances whose
amount is determined by an algorithm parameter. This
parameter is the percent of number of minority samples to be
considered while generating new samples. In the study, this
parameter is set to 100% and therefore all minority samples are
used for new samples. As a result, the number of minor
samples are doubled. Another parameter of SMOTE is the
number of nearest neighbors which is determined as 5.

Table 3. Results of evaluation of laryngeal microarray gene expression
data using DDBN and SVM (with polynomial kernel).

Methods Accurac
y

Sensitivit
y

Specificit
y

Precisio
n

F-
measure

DDBN
No prep. 0.716 0.500 0.813 0.548 0.523

IG 0.881 0.853 0.893 0.784 0.817

SMOTE 0.860 0.941 0.787 0.800 0.865

IG + SMOTE 0.944 0.985 0.907 0.905 0.943

SVM

No prep. 0.569 0.294 0.693 0.303 0.299

IG 0.872 0.794 0.907 0.794 0.794

SMOTE 0.832 0.971 0.707 0.75 0.846

IG + SMOTE 0.937 0.956 0.920 0.915 0.935

Table 4. Results of evaluation of bladder microarray gene expression
data using DDBN and SVM (with polynomial kernel).

Methods Accurac
y

Sensitivit
y

Specificit
y

Precisio
n

F-
measure

DDBN

No prep. 0.533 0.712 0.300 0.569 0.633

IG 0.913 0.942 0.875 0.907 0.950

SMOTE 0.818 0.558 0.988 0.967 0.708

IG +
SMOTE 0.947 0.865 1.000 1.000 0.928

SVM

No prep. 0.707 0.808 0.575 0.712 0.757

IG 0.946 0.923 0.975 0.980 0.950

SMOTE 0.909 0.808 0.975 0.855 0.875

IG +
SMOTE 0.962 0.904 1.000 1.000 0.949

Table 5. Results of evaluation of colorectal microarray gene
expression data using DDBN and SVM (with polynomial kernel).

Methods Accurac
y

Sensitivit
y

Specificit
y

Precisio
n

F-
measure

DDBN

No prep. 0.640 0.188 0.895 0.500 0.273

IG 0.798 0.594 0.912 0.792 0.679

SMOTE 0.471 0.750 0.158 0.500 0.600

IG +
SMOTE 0.909 1.000 0.807 0.853 0.921

SVM

No prep. 0.640 0.313 0.312 0.500 0.385

IG 0.719 0.563 0.807 0.621 0.590

SMOTE 0.868 0.984 0.737 0.808 0.887

IG +
SMOTE 0.826 0.891 0.754 0.803 0.844

In Figure 3, it can be seen that the application of both
preprocessing steps of IG and SMOTE contributed to more
stable results. In order to recognize DDBN or SVM to be
successful the result in each metric should approximate to 1.
Therefore we expect each curve would be as flat as possible in
the alignment of 1 score.
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Figure 3. Comparison of DDBN vs. SVM in (a) laryngeal cancer (b)
bladder cancer (c) colorectal cancer datasets. The effect of SMOTE
and IG preprocessing are also given for each dataset.

In Figures 3A and 3B the results of laryngeal and bladder
carcinoma after application of IG and SMOTE are comparable
for DDBN and SVM. In Figure 3C, performance of DDBN on
bladder carcinoma without preprocessing is very low in
sensitivity while it is very high in specificity which caused
instability in the curve. This is because the major of the bladder
data is classified to negatives and thus positive instances are
classified incorrectly i.e., very few instances are decided to be
positive. In such cases, F-measure is more reliable than using
sensitivity and specificity alone to measure the overall
performance, since F-measure weighs positive and negative
cases in a more balanced way. Although DDBN and SVM
seem to produce nearly the same accuracy in colorectal
carcinoma data in no preprocessing category, SVM is more
stable than DDBN in both detecting positive and negative
cases. On colorectal gene expression data, the application of IG
and SMOTE provided a considerable contribution to the
improvement of results, especially to the results of DDBN. It
should be noted that in classification tasks the performance
results are very dependent on the data and in this context
colorectal carcinoma data is observed to be more sensitive to
preprocessing steps. This is because this dataset suffers more
from the imbalanced class distribution problem with relatively
less number of samples in the dataset. In this dataset with the

application of IG and SMOTE, DDBN has outperformed SVM
by accuracy, sensitivity and specificity values of 0.909, 1.000
and 0.807, respectively. Considering all the three datasets,
Table 6 shows that in terms of average values DDBN has
outperformed SVM in all metrics.

Using t-test on the difference of the corresponding accuracy
values of DDBN and SVM, the value of 0.842 is obtained on
the t-distribution with 2 degrees of freedom. In this case the
obtained p-value is greater than 0.10. H0 hypothesis is not
rejected which indicates the mean of the differences of the
accuracies is 0. Therefore according to the analysis of the
results there is not statistical significance between DDBN and
SVM. This verifies that classification performance of DDBN is
at least as good as that of SVM.

Table 6. Averages of results in each metric from three microarray gene
expression data after preprocessing of IG and SMOTE.

Evaluation metrics
Averages of results

DDBN SVM

Accuracy 0.933 0.908

Sensitivity 0.950 0.917

Specificity 0.905 0.891

Precision 0.912 0.906

F-measure 0.931 0.909

In the first dataset where imbalanced class distribution is the
most obvious, number of negatives are more than the double of
number of positives, DDBN clearly outperforms SVM without
any preprocessing. Another distinct feature of the dataset is its
number of features, being nearly half of features in other
datasets. In this dataset, the performance of SVM can only be
comparable to that of DDBN with preprocessing. In the other
datasets, the second and the third, the class imbalance problem
is slighter when compared to the first dataset. In the second
dataset SVM is better without any preprocessing while the
final results of the two algorithms with preprocessing are
comparable. In the third one, the performances are similar
without preprocessing but DDBN clearly outperforms SVM
with preprocessing. Since the structural features of these two
datasets are similar, different performances of DDBN and
SVM suggest that their performances may vary depending on
the dataset. However, in overall performance, DDBN appeared
to perform better in terms of the F-measure metric which alone
can safely be used to compare the overall classification
performance of a classifier [46].

As a result, empirical results of the study suggest that DDBN
has the potential as a decision support system in gene
expression data based cancer diagnosis. The layered structure
of DDBN is convenient for identifying relevant genes in
microarray gene expression data. Each layer produces the
features of their input feature values and this leaded to more
success of DDBN in high dimensional data. As a deep model,
DDBN tends to extract a relevant set of features from the input
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layer and then it enhances the recognition process in the next
layer. The working principle of the presented network structure
allows learning the input statistics in the unsupervised greedy
layer wise training phase. This knowledge is then used in the
fine tuning phase by back propagation algorithm.

With the proposed model that used IG and SMOTE
preprocessing steps, the DDBN algorithm can be generalized
to perform adequately in other datasets of cancer, as well. By
use of preprocessing, the processing time is reduced and the
performance can be improved. According to Table 6 the overall
diagnosis performance of DDBN is 93.3% accuracy,
considering the datasets of this study which appeared to be
adequate for most of the cases.

Conclusions
In this study we adapted a deep learning approach, namely
DDBN to the problem of gene expression data classification.
The method includes a preprocessing phase with IG and
SMOTE and a classification phase with DDBN. The
effectiveness of the method is demonstrated by using
laryngeal, bladder and colorectal microarray gene expression
datasets. The results of DDBN are compared with those of
SVM which is proven to be very successful in microarray gene
expression classification in recent studies [14-18].

The experiments showed that in microarray gene expression
data analysis both DDBN and SVM achieved promising results
after eliminating the effect of redundant and inconsistent
features by use of preprocessing steps of IG and SMOTE. In
average values, DDBN outperformed SVM in all metrics. For
future studies other deep learning methods besides DDBN are
worth investigating for not only other types of cancers but also
in different areas of biomedicine.
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