
Computerized colony classification of induced pluripotent stem cells using
Gaussian naïve Bayes model on phase contrast images.

Muthu Subash Kavitha, Byeong-Cheol Ahn*

Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea

Abstract

This study aims to develop a computerized software tool that automatically separates the colony contour
region of induced pluripotent stem cells (iPSCs) and classifies the health conditions of the colonies using
the Gaussian naïve Bayes (GNB) model. The occluded colony regions were automatically segmented
based on the phase contrast images using image processing techniques to obtain quantitative
morphological features for classification. The sequential forward selection method was utilized to extract
optimized features for the identification of colony conditions. The GNB model was adapted to validate
the individual colony features and their combinations using a five-fold cross validation method for
classification. Furthermore, the classification performance of GNB was compared with that of the k-
nearest neighbor (k-NN) method. The classification performance of the combination of features using
the GNB approach presented the highest sensitivity (91.4%), specificity (88.2%), and accuracy (90.8%)
for the classification of the colonies of iPSCs. Furthermore, compared with the k-NN classifier (14.3%),
GNB showed lower misclassification rate (9.2%) in classification. Based on experimental results, we
concluded that the proposed automated colony region segmentation and classification based on the
combination of features using GNB model is precise and cost-effective for the classification of health
conditions of iPSC colonies.
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Introduction
Induced pluripotent stem cells (iPSCs) are pluripotent stem
cells generated from adult cells by reprogramming [1]. It is
important to analyze the quality of iPSCs for further
experiments such as drug development, tissue engineering, and
transplantation in medicine. Hence, the estimation of the status
of iPSCs using an automated software technique is very useful
for their quality assessment, which is essential for the
biological experimental or clinical applications [2]. The
conventional methods of subjective analysis of colony
conditions suffered from the drawbacks of excessive time
consumption and classification errors. Therefore, automatic
classification tools are necessary to reduce the workload and
increase the classification efficiency and reliability. The
automatic segmentation of colony contours based on phase
contrast images is difficult owing to image artifacts and
occluded colonies. Several non-invasive conventional
approaches identified iPSCs based on the local feature
measurements of an object using machine learning algorithms
[3,4]. However, the morphological parameters of a colony are
considered to be one of the most important criteria to
continuously evaluate the health conditions of an iPSC colony
[5]. Healthy stem cells are observed to be compact and round
cells, whereas unhealthy stem cells appear different.
Furthermore, it is highly feasible to construct an efficient

computer model for analyzing the colony qualities based on the
quantitative morphological features obtained from the
representative iPSC colony images specified by experts [6].
The classification of iPSCs based on intensity histogram
feature sets using a support vector machine exhibited low
performance accuracy in the selection of colonies. Hence,
separating an iPSC colony contour automatically and
subsequently classifying colonies could improve the
classification accuracy [7]. The purpose of this study was to
develop a computerized software tool that segments an iPSC
colony contour based on phase contrast microscopy images and
classifies the health conditions of the colony using a less
complex Gaussian naïve Bayes (GNB) model. The quantitative
morphological features extracted from healthy and unhealthy
iPSC colonies were used to determine the conditions of the
colonies. Furthermore, the competitive performance of the
GNB was compared to that of the k-nearest neighbor (k-NN)
classifier based on individual features and their combinations
using a five-fold cross validation.

Materials and Methods

Dataset
The proposed study was tested with 46 iPSCs, which
comprised 20 healthy and 26 unhealthy colony images. All the
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images were prepared under the 100X objective of a phase
contrast microscope (Leica DM IL LED) with a resolution of
2048 × 1536 pixels. The iPSCs were purchased from American
Type Culture Collection (ATCC) and cultured on gelatin-
coated tissue culture dishes (100 mm in size) seeded with
inactive murine embryonic fibroblast feeder cells. TrypLETM
(ThermoFisher) was added for the passing of iPSCs, and iPSC
colonies were gently detached from the culture dishes by
tapping. The harvested iPSCs were seeded on new dishes with
5 × 104 cells each. The iPSCs analyzed in this study were not
stained or genetically modified.

Quantitative measurements of iPSC colony features
The various steps included in the determination of the health
conditions of an iPSC colony are illustrated in the schematic
overview as shown in Figure 1. The image quality was
improved via non-linear median filtering of pixel size 9 × 9.
Segmentation was carried out based on the criterion functions
equivalent to the class variance proposed by [8], which is
suitable for the images with regions of equal or unequal
variances. It computes the optimal threshold that maximizes
the likelihood of the conditional distribution of a population
mixture model consisting of two normal distributions with
different means and a common variance, represented by�(�) = log(��(�))− ∑� = 12 ��log(��) (1)
where t is the optimal threshold, v is the variance, and pj is the
probability of the jth class. The segmented image is
subsequently subjected to morphological closing, erosion, hole
filling, and size filtering operations. Finally, region labeling
was employed to derive the quantitative morphological
features of the colony contour regions for estimating the
colony quality (Figure 2). The labeling algorithm processes the
pixels from top to bottom and left to right in order to recognize
the connected pixel regions. It assigns labels to each pixel until
the label of a pixel no longer changes. After labeling is
completed, it is easy to derive the quantitative morphological
features of the colony regions. In this study, we have estimated
11 morphological features: area, perimeter, eccentricity, Euler
number, solidity, extent, compactness, mean intensity,
equivalent diameter, and major and minor axis lengths.

Sequential forward selection for optimized colony
features
In this study, we have utilized the sequential forward selection
technique (SFS) to evaluate the optimized features for high
classification performance [9]. In order to achieve a maximum
criterion function, a subset of f features is defined by iteratively
adding one feature at a time to an empty set. The maximum
criterion function is satisfied if the feature exhibits the best
classifier performance when it is added to the feature set. In
each iteration, the feature to be added to the feature set is
selected among the remaining features that have not been
included in the feature set. Hence, the newly generated feature
set yields lower classification error than the inclusion of any

other feature. Subsequently, a subset of f features is created
until the termination criterion is satisfied. It is defined as�� = ���� � (2)

Figure 1. Schematic overview of the proposed system.

Figure 2. Segmented colony for feature extraction (a) original images
(b) colony contour regions.

Gaussian naïve Bayes classification
The GNB classifier has been demonstrated to be one of the
most effective and useful supervised machine learning
algorithms for classification tasks in medical image analysis
[10,11]. In comparison with other machine learning methods,
the GNB classifier has the advantages of learning interior
relationships by including the prior knowledge using
probabilistic theory [12,13]. Moreover, the GNB classifier
works well even with a very small amount of training data. It
constructs a function to be optimized under a “naïve”
assumption that all the parameters in a dataset are independent.
Hence, it considers that the presence of a characteristic
explaining a certain class is independent of the presence of any
other characteristic. However, the GNB classifier assumes the
likelihood of the features to be Gaussian as follows:

�(� �) = 12���2exp − (�� − ��)22��2 (3)
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where mi a dependent feature, n is a class variable, and the
parameters σn and µn are calculated using maximum
likelihood. The GNB classifier estimates the probability
distribution of iPSC colony images conditioned on the quality
of the colony.

Statistical analysis
The optimized features of the colonies were used both
individually and as combinations of features in the GNB model
with k-fold cross validation to train and test the classifiers. The
performance measures applied in this study were sensitivity,
specificity, and accuracy. The sensitivity measure can
differentiate the unhealthy colonies correctly. It can be stated
as ����+ �� (4)
where TP is true positive and FN is false negative. The
specificity measure can estimate the healthy colonies correctly.
It is defined as����+ �� (5)
where TN is true negative and FP is false positive. The
accuracy measure can differentiate between the healthy and
unhealthy colonies correctly. Mathematically, it can be stated
as ��+ ����+ ��+ ��+ �� (6)
The classification performance of the GNB approach is
compared with that of the k-NN classifier method [14]. In k-
NN, Euclidean distance measures were computed between the
test features and all the training features with k nearest
neighbors (k=3). In the k-fold cross-validation method, the
data set was randomly separated into k equal subsets.
Subsequently, k-1 subsets were used as training sets, and the
other subsets were used as test sets. This experiment was
continued for all the different choices of k subsets, and the sum
average of the accuracy was evaluated. The application of
GNB and k-NN classifier models for the classification of iPSC
colonies was implemented using Scikit-learn toolkit in Python
[15].

Results and Discussion
The optimized morphological features of the iPSC colony
evaluated using the SFS method were area, perimeter,
equivalent diameter, eccentricity, solidity, and extent based on
the maximum criterion value. The ranges of values of the
estimated optimized features for healthy and unhealthy
colonies are visualized in Figure 3. The ranges of values of
area, perimeter, equivalent diameter, solidity, and extent of
healthy colonies were higher than those of unhealthy colonies.
However, the ranges of values of eccentricity of healthy
colonies were low compared to those of unhealthy colonies.
The optimized features of the colonies were evaluated using
GNB and k- NN with five-fold cross validation to train and test

the classifiers. We used 28 training and 18 testing datasets for
the evaluation of classifiers adopted in this study.

Figure 3. Comparisons between the ranges of values of
morphological features of unhealthy and healthy colonies: (a) area,
(b) perimeter, (c) equivalent diameter, (d) eccentricity, (e) solidity,
and (f) extent.

Figure 4. Comparisons of mean classification performance of
Gaussian naïve Bayes and k-NN classifier models.

The classification performance of the machine learning
classifiers based on individual morphological features and their
combinations using five-fold cross validation were used in this
study and presented in Tables 1-3. The feature “area” exhibited
the highest performance accuracy in classifying colonies
among the individual features in both GNB and k-NN (Table
1). The feature “solidity” exhibited the highest performance
accuracy with GNB but exhibited lower classification
performance with k-NN for classifying colonies. The other
remaining individual features evaluated using the two
classifiers yielded moderate or low classification
performances.

Table 1. Results of Gaussian naïve Bayes and k-nearest neighbor
classifiers for the classification of the colonies of iPSCs based on
individual morphological features using a five-fold cross validation
method.

Features Sensitivity
(%)

Specificity (%) Accuracy
(%)

Naïve Bayes classifier

Area 85.7 72.2 80.4

Perimeter 71.4 61.1 67.4

Equivalent Diameter 78.6 72.2 76.1
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Eccentricity 75.0 61.1 69.6

Solidity 82.1 77.8 80.4

Extent 75.0 66.7 71.7

k-NN classifier

Area 89.3 71.7 82.6

Perimeter 67.9 61.1 65.2

Equivalent Diameter 71.4 66.7 69.6

Eccentricity 64.3 55.6 60.8

Solidity 71.4 66.6 69.6

Extent 78.6 61.1 69.3

The mean or average classification performance of the GNB
classifier in classifying the colonies of iPSCs exhibited the
highest sensitivity (91.4%), specificity (88.2%), and accuracy
(90.8%) using the combination of features (Table 2).
Furthermore, the average misclassification rate or error rate
estimated for the GNB approach for classifying the colonies
was 9.2%. The average sensitivity, specificity, and accuracy of
the k-NN classifier in classifying the colonies of iPSCs based
on the combination of features were 87.7%, 82.8%, and 85.7%,
respectively (Table 3). The performance measures of the GNB
approach were higher compared with those of the k-NN
method for classifying the colonies of iPSCs as shown in
Figure 4. Furthermore, the average misclassification rate or
error rate evaluated for the k-NN classifier (14.3%) was much
higher than that of the GNB approach for classifying the
colonies of iPSCs.

Table 2. Results of Gaussian naïve Bayes classifier for the
classification of the colonies of iPSCs based on the combination of
morphological features using a five-fold cross validation method.

Fold Sensitivity (%) Specificity (%) Accuracy (%) Error rate (%)

Fold1 90.5 85.7 89.4 10.6

Fold 2 90.0 89.6 90.2 9.8

Fold 3 92.9 90.0 92.3 7.7

Fold 4 92.8 86.4 90.0 10.0

Fold 5 90.8 89.5 92.1 7.9

We developed a computerized software tool that automatically
identifies the colony contour regions of iPSCs and extracts the
morphological features quantitatively. The use of the GNB
approach in classifying the morphological features of the
colony conditions delivered acceptable results with a high
degree of consistency and reproducibility. One of the major
benefits of this computerized system over a manual evaluation
is the objectivity of the automated estimation. The proposed
system automatically separates the occluded colony regions in
the phase contrast images of iPSCs by measuring the
morphological features of the colony conditions, which can
minimize the computation errors of the conventional
evaluation [4,16]. Furthermore, it is crucial to consider the

model complexity in a computerized software tool. Hence, the
proposed system, which uses a less complex GNB classifier
model and its uncertainty estimation based on the probabilities
of the outcomes, achieves robust differential classification of
iPSC colonies with a higher accuracy (90.8%) than the k-NN
classifier approach.

Table 3. Results of k-nearest neighbor classifier for the classification
of the colonies of iPSCs based on the combination of morphological
features using a five-fold cross validation method.

Fold Sensitivity (%) Specificity (%) Accuracy (%) Error rate (%)

Fold1 90.5 87.7 90.1 9.9

Fold 2 87.2 80.0 84.1 15.9

Fold 3 89.9 84.5 87.0 13.0

Fold 4 84.8 79.4 82.7 17.3

Fold 5 85.9 82.5 84.5 15.5

Furthermore, the GNB model can be quickly adapted for the
classification of new test samples while k-NN required tuning
every time for the classification of new test samples. The
competitive performance of GNB as compared to that of the k-
NN was also demonstrated in another study that classified
living embryonic stem cells based on imaging techniques using
machine learning approaches [11]. Furthermore, it was also
reported that the combination of features was more accurate
than a single feature, which is in accordance with the results of
this study for classifying the colony categories of iPSCs [11].
The differentiation of a human iPSC colony reported in the
previous study based on various machine learning techniques
revealed a low classification performance of slightly more than
63%, which is much lower than that achieved in our study
using imaging techniques and GNB for obtaining automated
colony contour regions for the classification of categories of
colonies [7]. Furthermore, the lower error rate obtained using
the GNB approach showed the reliability of the proposed
model for classifying the health conditions of colonies.

The limitations of this study are a small number of samples and
the limited number of morphological features for the
classification of colonies. Further studies with larger number of
samples with various features extracted from colony contour
regions should be included to validate the proposed model and
achieve improved performance. The classification
performances achieved with the combination of morphological
features by the application of GNB in this study revealed that
our proposed computerized software tool is accurate and
efficient for classifying the colony categories of iPSCs.
Compared with the k-NN classifier method, GNB
demonstrated lower misclassification rate, and thus, it could be
a more reliable method for the detection of iPSC colonies.
Hence, the proposed identification system of automated colony
health conditions can be useful to clinicians and it can
significantly reduce the classification error owing to subjective
measurement.
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