Biharmonic timelike curves according to Bishop frame in Minkowski 4-space.

Solouma EM¹, Wageeda MM²
¹Faculty of Science, Department of Mathematics, Beni-Suef University, Beni-Suef, Egypt
²Faculty of Science, Department of Mathematics, Aswan University, Aswan, Egypt

Abstract

In this paper, we study biharmonic timelike curves according to Bishop frame in Minkowski 4-space \(E^4 \). Additionally, we give some characterizations for curvatures of these curves with respect to the principal curvature functions \(k_1(s), k_2(s), k_3(s) \) according to Bishop frame.

Keywords: Minkowski space-time, Biharmonic curve, Bishop frame, Heisenberg group.

Accepted on November 29, 2017

Introduction

In the last decade there has been a growing interest in the theory of biharmonic maps which can be divided in two main research directions. On the one side, constructing the examples and classification results has become important from the differential geometric aspect. The other side is the analytic aspect from the point of view of partial differential equations, because biharmonic maps are solutions of a fourth order strongly elliptic semi linear PDE. Any arbitrary curve \(\gamma = \gamma(s) :I \rightarrow (N,h) \) of a Riemannian manifold are the solutions of the fourth order differential equation

\[
\nabla_\gamma'\gamma' = \mathcal{R}(\gamma',\nabla_\gamma\gamma')\gamma' = 0,
\]

where, \(\mathcal{R} \) is the Levi-Civita connection on \((N,h)\) and \(\mathcal{R} \) is its curvature operator. As we shall detail in the next section, they arise from a variational problem and are a natural generalization of geodesics. In the last decade biharmonic curves have been extensively studied and classified in several spaces by analytical inspection of Equation 1 [1-15].

Although much work has been done, the full understanding of biharmonic curves in a surface of the Euclidean three-dimensional space is far from been achieved. As yet, we have a clear picture of biharmonic curves in a surface only in the case that the surface is invariant by the action of a one parameter group of isometries of the ambient space. For example, in the study by Caddeo et al. [4] it was proved that a biharmonic curve on a surface of revolution in the Euclidean space must be a parallel that is an orbit of the action of the group on the surface. This property was then generalized to invariant surfaces in a 3-dimensional manifold [15].

In this paper, we study biharmonic non-lightlike curves according to Bishop frame in Minkowski 4-space \(E^4 \). We give some characterizations for curvatures of a biharmonic non-lightlike curve in \(E^4 \). This paper is organized as follows: Section 2 gives some basic concepts of the Frenet frame and Bishop frame of a curve in \(E^4 \). Section 3 obtained some characterizations for curvature of these curves with respect to the principal curvature functions \(k_1(s), k_2(s), k_3(s) \) according to Bishop frame.

Preliminaries

The Minkowski space-time is four-dimensional Euclidean space provided with the Lorentzian inner product,

\[
\mathbf{u}_1, \mathbf{v}_1 = -u_1v_1 + u_2v_2 + u_3v_3 + u_4v_4
\]

where \(\mathbf{u} = (u_1,u_2,u_3,u_4) \) are the rectangular coordinates of \(\mathbb{E}^4 \). Any vector \(\mathbf{u} \) in \(\mathbb{E}^4 \) can be characterized as follows: the vector \(\mathbf{u} \) is called spacelike, timelike or null if \(u_4 > 0 \), \(u_4 = 0 \) or \(u_4 < 0 \) respectively. The norm of a vector \(\mathbf{u} \in \mathbb{E}^4 \) is given by \(\mathbf{u} \cdot \mathbf{u} = \sqrt{u_1^2 + u_2^2 + u_3^2 + u_4^2} \).

Any arbitrary curve \(\gamma = \gamma(s) :I \rightarrow \mathbb{E}^4 \) is spacelike, timelike or lightlike (null), if all of its velocity vector \(\gamma'(s) \) are spacelike, timelike or lightlike (null), respectively. If \(\gamma'(s) = 1 \), then \(\gamma \) is called unit speed curve [16]. For any unit speed timelike curve \(\gamma \) with Frenet-Serret frame \(\{T,N,B_1,B_2\} \), the Frenet formulas of the curve \(\gamma \) can be given as:

\[
\frac{d}{ds} \begin{bmatrix} T \\ N \\ B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} 0 & \varepsilon_1 \kappa(s) & 0 & 0 \\ 0 & \varepsilon_1 \tau(s) & 0 & 0 \\ 0 & 0 & -\varepsilon_2 \sigma(s) & \varepsilon_3 \tau(s) \\ 0 & 0 & \varepsilon_3 \sigma(s) & \varepsilon_2 \tau(s) \end{bmatrix} \begin{bmatrix} T \\ N \\ B_1 \\ B_2 \end{bmatrix},
\]

where, \(\varepsilon_1 = T, \varepsilon_2 = N, \varepsilon_3 = B_3 \) and \(\kappa(s), \tau(s) \) and \(\sigma(s) \) are curvature, first and second torsion functions of the curve \(\gamma \) respectively. Here, we call the value of \((\varepsilon_1,\varepsilon_2,\varepsilon_3) \) as the character of Frenet frame of the curve \(\gamma \).

The Bishop frame or parallel transport frame is an alternative approach to define a moving frame that is well defined even when the curve has vanished second derivative. We can transport an orthonormal frame along a curve simply by Bishoping each component of the frame [1-3,12,13]. The tangent vector and any convenient arbitrary basis for the remainder of the frame are used. The Bishop frame is expressed as:

\[
\frac{d}{ds} \begin{bmatrix} T \\ N_1 \\ N_2 \\ N_3 \end{bmatrix} = \begin{bmatrix} 0 & k_1(s) & 0 & 0 \\ k_1(s) & 0 & 0 & 0 \\ k_2(s) & 0 & 0 & 0 \\ k_3(s) & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} T \\ N_1 \\ N_2 \\ N_3 \end{bmatrix},
\]
where \(k_1(s), k_2(s), k_3(s) \) are principal curvatures of the timelike curve according to the parallel frame and their expression as following:
\[
\begin{align*}
k_1(s) &= \kappa(s) \cos \sin \beta, \\
k_2(s) &= \kappa(s) (\sin \beta \cos \theta - \sin \alpha \cos \beta \sin \theta), \\
k_3(s) &= \kappa(s) (\sin \beta \sin \theta + \sin \alpha \cos \beta \cos \theta),
\end{align*}
\]
and
\[
\begin{align*}
\kappa(s) &= \sqrt{k_1^2(s) + k_2^2(s) + k_3^2(s)}, \\
\tau(s) &= \beta'(s) + \alpha'(s) \tan \alpha \cot \beta, \\
\sigma(s) &= \frac{\alpha'(s)}{\sin \beta},
\end{align*}
\]
where \(\beta, \alpha, \theta \) are the spherical angle between the spacelike vectors \(N_i \) and \(N_j \), spacelike vectors \(N_i \) and \(N_j \), spacelike vectors \(N_i \) and \(N_j \) respectively [9]. We shall call the set \(\{T, N_1, N_2, N_3\} \) as Bishop frame of \(Y \) in the Minkowski 4-space \(E^4_1 \).

Discussion and Conclusion

Biharmonic non-lightlike curves according to Bishop frame in \(E^4_1 \)

In this section we give the notation of biharmonic non-lightlike curves in \(E^4_1 \) according to Bishop frame. We also obtain some characterizations for curvature of these curves. Let \(\gamma(s) = (\gamma_1(s), \gamma_2(s), \gamma_3(s), \gamma_4(s)) \) be a unit speed timelike curve parametrized by arc-length in \(E^4_1 \). The corresponding Bishop frame formula has the following form:
\[
\begin{align*}
Y'(s) &= T, \\
T'(s) &= k_1 N_1 + k_2 N_2 + k_3 N_3, \\
N'_1 &= k_2 T, \\
N'_2 &= k_3 T, \\
N'_3 &= k_1 T,
\end{align*}
\]
where \(k_1, k_2, k_3 \) and \(Y \) are the principal curvature functions according to Bishop frame of the curve \(Y \). Now, the biharmonic equation for the curve \(Y \) reduces to
\[
V_4 \Gamma - R(T, \nabla Y, T)T = 0.
\]
Here, the curve \(Y \) is called a biharmonic curve if it is a solution of the Equation (3).

Theorem 3.1: Let \(\gamma \) be a unit speed timelike curve with non-zero principal curvature \(k_1, k_2, k_3 \) in \(E^4_1 \). Then \(\gamma \) is a biharmonic curve if and only if the following conditions are satisfied:
\[
\begin{align*}
k_1^2 + k_2^2 + k_3^2 &= \mathcal{V}, \\
k_1 \kappa_1 (k_2^2 + k_3^2) &= 0, \\
k_2 \kappa_2 (k_3^2 + k_1^2) &= 0, \\
k_3 \kappa_3 (k_1^2 + k_2^2) &= 0,
\end{align*}
\]
where \(\mathcal{V} \) is non-zero constant of integration.

Proof. Using the Bishop Equation (2) and biharmonic Equation (3), we obtain
\[
\begin{align*}
(3k_1 k_1' + 3k_2 k_2' + 3k_3 k_3') T + (k_1' k_2 + k_2' k_3 + k_3' k_1) N_1 \\
+ (k_2' k_3 + k_3' k_1 + k_1' k_2) N_2 + (k_3' k_1 + k_1' k_2 + k_2' k_3) N_3 = 0.
\end{align*}
\]
In Minkowski 4-space \(E^4_1 \), the Riemannian curvature is zero, then we have
\[
\begin{align*}
(3k_1 k_1' + 3k_2 k_2' + 3k_3 k_3') T + (k_1' k_2 + k_2' k_3 + k_3' k_1) N_1 \\
+ (k_2' k_3 + k_3' k_1 + k_1' k_2) N_2 + (k_3' k_1 + k_1' k_2 + k_2' k_3) N_3 = 0,
\end{align*}
\]
By Equation (6), we see that the curve \(\gamma \) is a unit speed biharmonic curve if and only if
\[
\begin{align*}
k_1^2 k_1 + 3k_2 k_2 + 3k_3 k_3 &= 0, \\
k_1 k_1 \kappa_1 (k_2^2 + k_3^2) &= 0, \\
k_2 k_2 \kappa_2 (k_3^2 + k_1^2) &= 0, \\
k_3 k_3 \kappa_3 (k_1^2 + k_2^2) &= 0,
\end{align*}
\]
Hence from the Equation (7), we get the result which complete our proof.

As a consequence of the Equation (4) we obtain the following Corollary;

Corollary 3.2: Let \(\gamma \) be a unit speed timelike curve with non-zero principal curvature \(k_1, k_2, k_3 \) in \(E^4_1 \). Then \(\gamma \) is a biharmonic curve if and only if the following conditions are satisfied:
\[
\begin{align*}
k_1^2 + k_2^2 + k_3^2 &= \mathcal{V}, \\
k_1 + k_2 = 0, \\
k_2 + k_3 = 0, \\
k_3 = 0,
\end{align*}
\]
Where \(\mathcal{V} \) is non-zero constant of integration.

Theorem 3.3: Let \(\gamma \) be a unit speed timelike curve with non-zero principal curvature \(k_1, k_2, k_3 \) in \(E^4_1 \). Then \(\gamma \) is a biharmonic curve if and only if the following conditions are satisfied:
\[
\begin{align*}
k_1^2 (s) + k_2^2 (s) + k_3^2 (s) &= \mathcal{V}, \\
k_1 (s) &= A_1 \cos \sqrt{\mathcal{V}} s + B_1 \sin \sqrt{\mathcal{V}} s, \\
k_2 (s) &= A_2 \cos \sqrt{\mathcal{V}} s + B_2 \sin \sqrt{\mathcal{V}} s, \\
k_3 (s) &= A_3 \cos \sqrt{\mathcal{V}} s + B_3 \sin \sqrt{\mathcal{V}} s,
\end{align*}
\]
where \(A_i, B_i \) for \(1 \leq i, j \leq 3 \) and \(\mathcal{V} \) are constants of integration.

Proof. Directly, by using Equation (8), we have Equation (9). □

Corollary 3.4: If \(A_1 = A_2 = A_3 \) and \(B_1 = B_2 = B_3 \), then we have \(k_1(s) = k_2(s) = k_3(s) \).

Corollary 3.5: Let \(\gamma \) be a unit speed timelike biharmonic curve with non-zero principal curvature \(k_1, k_2, k_3 \) in \(E^4_1 \), then
\[
\begin{align*}
A_1 \cos \sqrt{\mathcal{V}} s + B_1 \sin \sqrt{\mathcal{V}} s &= \sqrt{\mathcal{V}} \sin \Theta \cos \Phi, \\
A_2 \cos \sqrt{\mathcal{V}} s + B_2 \sin \sqrt{\mathcal{V}} s &= \sqrt{\mathcal{V}} \sin \Theta \sin \Phi, \\
A_3 \cos \sqrt{\mathcal{V}} s + B_3 \sin \sqrt{\mathcal{V}} s &= \sqrt{\mathcal{V}} \cos \Theta,
\end{align*}
\]
where $\Theta \in [0, \pi]$, $\Phi \in [0, 2\pi]$ and γ, A, B, for $1 \leq i, j \leq 3$ are constants of integration.

References

1. Bishop LR. There is more than one way to frame a curve. Amer Math Monthly. 1975;82:246-51.

Correspondence to:
Solouma EM
Faculty of Science
Department of Mathematics
Beni-Suef University
Beni-Suef
Egypt
Tel: +2 (082) 232 48 79
E-mail: emadms74@gmail.com