Assessment of the frequency of mitochondrial tRNA variants in patients with ovarian cancer.

Ke He¹#, Gang Niu¹#, Wang Jing¹, Lin-Jing Yuan¹, Li-Nan Xu², Hu Qu³*

¹Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
²Department of Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, PR China
³Department of Urology/Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, PR China

#These authors contributed equally

Abstract

Background: Alternations in mitochondrial DNA (mtDNA) have long been proposed to be involved in the pathogenesis of ovarian cancer (OC). However, the allele frequency of mitochondrial tRNA (mt-tRNA) variants in OC remains largely understood.

Objective: To explore the potential association between mt-tRNA variants and OC.

Methods: 95 OC patients and 50 control subjects were participated in this study. The 22 mt-tRNA genes were PCR amplified and subsequently sequenced by ABI-3700 automatic DNA sequencer. Moreover, we used phylogenetic approach to determine the pathogenic status of these mt-tRNA variants.

Results: We identified 4 mt-tRNA variants: the tRNAThrA15951G; tRNAHisG12192A; tRNAGluA14693G and tRNALeu(UUR)A3302G, whereas these tRNA variants were absent in healthy controls. Moreover, these variants localized at positions which were highly conserved between different species, and may cause the failure in mt-tRNAs metabolism, consequently result in mitochondrial dysfunction that responsible for OC.

Conclusions: Variations in mt-tRNAs may be associated with OC.

Keywords: Ovarian cancer, Transfer RNA mutations, Mitochondrial dysfunction.

Introduction

Ovarian cancer (OC) is the seventh most common malignancy. It was estimated that in 2012 about 152,000 women died of OC in the world [1]. The incidence of OC in women under the age of 40 years was reported to be 2–14% and had been increasing in recent year [2]. Approximately 70% of patients with OC were diagnosed at an advanced stage, with associated poor prognosis, even after aggressive and immediate treatments. However, up to date, the molecular mechanism underlying OC remained poorly understood [3].

OC cells, similar to other solid tumour cells and in contrast to normal cells, heavily relied on aerobic glycolysis for energy production, a phenomenon known as the Warburg effect [4]. This effect, which was manifested by increased glucose consumption, decreased oxidative phosphorylation (OXPHOS) and accompanying lactate production, had been confirmed and was generally accepted as it had been demonstrated in various tumours. Mitochondria were vital energy-producing organelles in eukaryotic cells that were primarily responsible for generating ATP by OXPHOS. Their efficient functioning was determined by both the nuclear genome and the maternally inherited 16.6-kb mitochondrial genome [5]. Mitochondrial dysfunctions caused by mitochondrial DNA (mtDNA) mutations had been found to be associated with a large number of human cancers, including OC [6]. Owing to the lack of histones protection and a poor DNA repair system, mtDNA had a higher mutation rate than nuclear DNA [7]. Among these, mitochondrial transfer RNA (mt-tRNA) genes were the hot spots for pathogenic mutations associated with OC. The frequency of mt-tRNA mutations in OC was not fully elucidated.

In this study, we performed a mutational analysis of mt-tRNA genes in 95 OC patients and 50 healthy subjects using PCR and direct sequence. As a result, we identified 4 potential pathogenic mt-tRNA mutations.
Materials and Methods

Samples

Since January 2015 to December 2016, a total of 95 genetically unrelated Chinese subjects with OC, aged 38 to 66 years old, (average age of 43.6 ± 6.1 years) were recruited in Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Sun Yat-sen University. In addition, 50 control subjects, aged 40 to 65 years old, (average age of 44.1 ± 5.9 years) with age- and body mass index-matched were enrolled in this study. Informed consent, blood samples, and clinical evaluations were obtained from all participants, under protocols approved by the Ethics Committee of the First Affiliated Hospital of Sun Yat-sen University. Signed written informed consents were obtained from all the participants before the study. All these patients did not manifestate any other mitochondrial diseases such as deafness, diabetes mellitus, vision loss or neurological disorders.

Screening for the variants in mt-tRNA genes

Genomic DNA was isolated from the whole blood of participants using Puregene DNA Isolation Kits (Gentra Systems, Minneapolis, MN). The fragments spanning all 22 of the mt-tRNA genes of 95 patients and 50 control samples were PCR-amplified by use of sets of the light-strand and the heavy strand oligonucleotide primers as mentioned in a previous investigation [8]. Each fragment was purified and subsequently analyzed by direct sequencing in an ABI 3700 automated DNA sequencer using a Big Dye Terminator Cycle sequencing reaction kit. The resultant sequence data were compared with the updated consensus Cambridge sequence (GenBank accession number: NC_012920) [9].

Structural analysis

The published secondary structures for the mt-tRNAs were used to define the stem and loop structure [10].

Phylogenetic analysis

A total of 17 vertebrates’ mtDNA sequences were used in the interspecies analysis. These included Bos taurus, Cebus albifrons, Gorilla gorilla, Homo sapiens, Hylobates lar, Lemur catta, Macaca mulatta, Macaca sylvanus, Mus musculus, Nycticebus coucang, Pan paniscus, Pan troglodytes, Papio hamadryas, Pongo abelii, Pongo pygmaeus, Tarsius bancanus, and Xenopus laevis (Genbank; Table 1). The conservation index (CI) was calculated by comparing the human nucleotide variants with 16 other vertebrates. The CI was then defined as the percentage of species from the list of 17 different vertebrates that had the wild-type nucleotide at that position.

Results

Screening for the variants in 22 mt-tRNA genes

Using PCR and direct sequencing analysis, we identified 6 mt-tRNA variants: tRNALeu(UUR) A3302G, tRNAHis G12192A; tRNAglu A14693G; tRNAThr A15951G; tRNAMet T4454C and tRNAArg T10463C (Table 2 and Figure 1).

Table 1. MtDNA sequences of 17 vertebrate species.

<table>
<thead>
<tr>
<th>Species</th>
<th>GenBank Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>NC_012920</td>
</tr>
<tr>
<td>Cebus albifrons</td>
<td>NC_002763</td>
</tr>
<tr>
<td>Gorilla gorilla</td>
<td>NC_011120</td>
</tr>
<tr>
<td>Hylobates lar</td>
<td>NC_002082</td>
</tr>
<tr>
<td>Lemur catta</td>
<td>NC_004025</td>
</tr>
<tr>
<td>Macaca mulatta</td>
<td>NC_005943</td>
</tr>
<tr>
<td>Macaca sylvanus</td>
<td>NC_002764</td>
</tr>
<tr>
<td>Nycticebus coucang</td>
<td>NC_002765</td>
</tr>
<tr>
<td>Pan paniscus</td>
<td>NC_001644</td>
</tr>
<tr>
<td>Pan troglodytes</td>
<td>NC_001643</td>
</tr>
<tr>
<td>Papio hamadryas</td>
<td>NC_001992</td>
</tr>
<tr>
<td>Pongo pygmaeus</td>
<td>NC_001646</td>
</tr>
<tr>
<td>Pongo pygmaeus abelii</td>
<td>NC_002083</td>
</tr>
<tr>
<td>Tarsius bancanus</td>
<td>NC_002811</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>NC_006914.1</td>
</tr>
<tr>
<td>Bos Taurus</td>
<td>HM045018.1</td>
</tr>
<tr>
<td>Xenopus laevis</td>
<td>NC_001573.1</td>
</tr>
</tbody>
</table>

Of these, the A3302G variant was detected 1 out of 95 OC patients (1.05%); the G12192A variant was detected in 2 patients with OC (2.1%); the A14693G variant was detected in 1 patient (1.05%), the A15951G variant was detected in 1 OC patient (1.05%). In addition, 2 variants were identified only in healthy subjects: the T4454C variant was detected in 2 out of 50 controls (4%); and the T10463C variant was detected in 1 control subject (2%). Notably, the A3302G, G12192A, A14693G and A15951G variants were detected only in the OC patients but were absent in the controls, suggested that these variants may be associated with OC, by contrast, the T4454C and T10463C variants were detected only in controls, suggested that the T4454C and T10463C variants were neutral polymorphisms. The locations of the OC-associated mt-tRNA variants were shown in Figure 2.
Assessment of the frequency of mitochondrial tRNA variants in patients with ovarian cancer

Figure 1. Schematic secondary structures of human mitochondrial tRNAs with standard nucleotide numbering. Cloverleaf structure of mt-tRNA_{Leu(UUR)}, mt-tRNA_{His}, mt-tRNA_{Glu} and mt-tRNA_{Thr}. Arrows indicated the locations of A3302G, G12192A, A14693G and A15951G variants.

Table 2. Variations in the mt-tRNA genes in 95 subjects with OC and 50 healthy controls.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Variant</th>
<th>No. of nucleotide in tRNAs</th>
<th>No. of 95 patients (%) Homoplasmic/ Heteroplasmic (%)</th>
<th>No. of controls (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRNA<sub>Leu(UUR)</sub></td>
<td>A3302G</td>
<td>71</td>
<td>100 Homoplasmic</td>
<td>1 (1.05) 0 (0)</td>
</tr>
<tr>
<td>tRNA<sub>His</sub></td>
<td>G12192A</td>
<td>59</td>
<td>100 Homoplasmic</td>
<td>2 (2.1) 0 (0)</td>
</tr>
<tr>
<td>tRNA<sub>Glu</sub></td>
<td>A14693G</td>
<td>54</td>
<td>100 Homoplasmic</td>
<td>1 (1.05) 0 (0)</td>
</tr>
<tr>
<td>tRNA<sub>Thr</sub></td>
<td>A15951G</td>
<td>71</td>
<td>100 Homoplasmic</td>
<td>1 (1.05) 0 (0)</td>
</tr>
<tr>
<td>tRNA<sub>Met</sub></td>
<td>T4454C</td>
<td>58</td>
<td>44.6 Homoplasmic</td>
<td>0 (0) 2 (4)</td>
</tr>
<tr>
<td>tRNA<sub>Arg</sub></td>
<td>T10463C</td>
<td>67</td>
<td>31.5 Homoplasmic</td>
<td>0 (0) 1 (2)</td>
</tr>
</tbody>
</table>

Evaluation of OC-associated mt-tRNA pathogenic mutations

To identify putative deleterious mutation, these variants were further evaluated using the following 3 criteria: (1) present in <1% of the controls; (2) CI>75%, proposed by Ruiz-Pesini and Wallace [11]; (3) potential structural and functional alterations. First, we used the secondary structure of mt-tRNAs to localize each variant with either a stem or a loop and to analyze if the base changes within stems altered the classic Watson-Crick base pair. As shown in Figure 2; 2 variants were localized at the acceptor arms, 2 variants occurred at the T arms. Notably, the A3302G and the A15951G variants disrupted the highly conserved Watson-Crick base-pair. While the G12192A and the A14693G variants created the novel base-pairing in the T arm of the corresponding tRNAs. In addition, a phylogenetic analysis was performed by comparing the human tRNA nucleotide variants with those in 16 other vertebrates. We took the A14693G variant as an example, as shown in Table 2 and Figure 3, the A3302G, G12192A, A14693G and A15951G variants had very high levels of evolutionary conservation (CI=100% for all). Whereas the T4454C and T10463C variants showed lower levels of evolutionary conservation, with the CIs of 44.6% and 31.5%, respectively. Based on these criteria, we proposed that the tRNA_{Leu(UUR)}A3302G, tRNA_{His}G12192A, tRNA_{Glu}A14693G and tRNA_{Thr}A15951G variants may have functional significance.

Figure 2. Identification of mt-tRNA_{Leu(UUR)}A3302G, mt-tRNA_{His}G12192A, mt-tRNA_{Glu}A14693G and mt-tRNA_{Thr}A15951G variants using PCR-Sanger sequencing.

Figure 3. Sequence alignment of mt-tRNA_{Glu} gene from different species, arrow indicated the position 54, corresponding to the A14693G variant.
Discussion

In the present study, we screened the potential pathogenic mt-tRNA mutations in patients with OC. OC was the result of the interaction of multiple genetic and environmental factors, many reports showed that multiples genes may be involved in the pathogenesis of this disease [12-14]. However, these genes were mainly nuclear genes; little was known the role of mitochondrial dysfunction in OC. Since mitochondria used OXPHOS to convert dietary calories into usable energy, releasing reactive oxygen species (ROS) as a toxic by-product. A significant number of epidemiological and clinical studies support the relationship between increased ROS and the pathogenesis of OC [15,16]. Moreover, gene encoding tRNA was the hot spot for pathogenic mutations associated with human mitochondrial diseases. Up to date, over 150 different pathogenic mutations have been reported which are located within mt-tRNA genes [17]. However, the frequency of mt-tRNA mutations in OC remained largely unknown.

For this purpose, we recently initiated a systematic mutational screening for mt-tRNA genes in 95 patients with OC, as well as 50 control subjects. Sequence analysis of the 22 mt-tRNA genes revealed the presence of 4 variants: tRNALeu(UUR) A3302G, tRNAGlu G12192A, tRNAGlu A14693G and tRNAThr A15951G. As shown in Figure 1 and Figure 2, the A3302G variant was localized at the highly conserved acceptor arm of tRNALeu(UUR), disrupted the Watson-Crick base-pairing (2T-71A). It was anticipated that this variant could affect the addition of the CCA triple to the 3’ terminus by the tRNA nucleotidyltransferase. In addition, the A3302G variant was described in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms (MELAS), complex I deficiency and lowered complex IV activity. Moreover, a significant reduction in the steady-state level of tRNALeu(UUR) A3302G should be regarded as a pathogenic mutation [21]. Therefore, the A15951G variant was not frequently.

While the A15951G variant was located adjacent to 3’ end, at conventional position 71 of tRNAThr. The adenine (A71) at this position of tRNAThr, highly conserved from bacteria to human mitochondria, had been implicated to be important for tRNA identity and pre-tRNA processing [27]. In addition, ~35% reduction in the level of tRNAThr was observed in cells carrying the A15951G variant. The lower level of tRNAThr in cells carrying the A15951G variant most probably results from a failure to aminoacylate properly this tRNAThr or a defect in the pre-tRNA processing caused by this mutation, as in the case of the A3302G variant in tRNALeu(UUR) [21]. Therefore, the A15951G was a pathogenic variant for OC. However, similar to the A3302G mutation, the allele frequency of the A15951G variant was not frequently.

In summary, our data provided the first evidence for the association between mt-tRNA variants and OC. The main limitation of the current study was the small sample size, further studies including more patients should be performed.

Acknowledgements

This work was supported by the Guangdong Provincial Science and Technology Project (No. 2011B061300048).

References

Assessment of the frequency of mitochondrial tRNA variants in patients with ovarian cancer

*Correspondence to
Dr. Hu Qu
Department of Urology/Reproductive Medicine Research Center
The Sixth Affiliated Hospital of Sun Yat-sen University
Guangzhou
PR China

Biomed Res 2018 Volume 29 Issue 3 594