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Abstract

Epilepsy is a series brain dynamical disorder, characterized by recurrent seizures. It is estimated that
incidence rates (number of new cases) range from 24 to 53 per 100000 for every year. Approximately,
33% of epilepsy patients suffer from seizures that are not controlled by anti-convulsant medications.
The patients with uncontrolled seizures experience several limitations in family, social and educational
activities. Therefore, epilepsy research based on the diagnosis and treatment of seizure is considered to
be greater importance. In this study, a method based on empirical mode decomposition and
approximate entropy (ApEn) is proposed to analyze the intracranial electroencephalography (iEEG)
recorded in non-seizure and seizure activity. For this purpose, a standard database based of University
of Bonn, Germany is utilized. The iEEG signals of non-seizure and seizure class are subjected to
empirical mode decomposition and Intrinsic Mode Functions (IMF) are obtained. Then the approximate
entropy is computed from each IMF. The results show that IMF based ApEn is higher in non-seizure
class. The ApEn extracted from the fourth IMF is found to perform better in terms of separating these
signals. Highest percentage difference of 165% is obtained for this IMF. Further, the ApEn values
extracted from all IMFs except IMF7 and IMF8 is found to have highly statistically significant

(p<0.0001).
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Introduction

Epilepsy is a common neurological disorder characterized by
unprovoked recurrent seizures. It is estimated that about 1% of
world population living with epilepsy [1]. It has been reported
that annual incidence of epilepsy is 43 people per 100,000 of
population in developed nations, and nearly twice in the
developing nations [2]. Around 90% of epiepsy patients found
in developing nations [3]. Neuronal firing rate associated with
the brain activity during seizure greatly differs from the normal
state [1]. People with epilepsy suffer from loss of
consciousness, depression, mental illness, strange sensations
and convulsions [2]. Therefore, the research based on diagnosis
of epilepsy is considered to have greater importance.

Electroencephalography (EEG) is a technique that records the
electrical activity of brain. In general, there are two types of
EEG depending upon the placement of electrodes on the head
namely scalp and intracranial. Scalp electrodes placed on the
scalp with good mechanical and electrical properties and it
gives scalp EEG. It is a non-invasive technique. Intracranial
EEGs are invasive technique and recorded by implanting the
electrodes in the brain during surgery [4]. These EEG signals
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contain lot of important information about the pathology of
epileptic brain. However, the temporal and spectral
characteristics of EEG signals continuously vary with time and
these variations make the analyses process very difficult and
challenging. Several time and frequency based measures have
been reported for the analysis of EEG signals for the diagnosis
of epilepsy. Time domain features such as line length, root
mean square amplitude, zero crossing, minima and maxima,
activity, mobility and complexity have been reported for the
analysis of EEG signals [5-7]. Similarly, several frequency
based measures such as bandwidth, peak frequency, peak
power and intensity weighted bandwidth have been used for
detection of epilepsy [7,8]. However, these features do not
account the nonstationary property of EEG signals.

In order to address the nonstationary characteristics of EEG
signals, numerous time-frequency methods have been proposed
in the literature. The short time-Fourier transform and wavelet
transform have been used to analyze the EEG signals of normal
and epileptic child. The time-varying frequency characteristics
of delta, theta, alpha, and beta bands were exploited [9]. In an
another study, Cohen class based time-frequency distributions
such as Wigner-Ville distribution (WVD), pseudo WVD, Choi-
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Williams distribution and Born-Jordon distribution have been
used to study the nonstationary variations of EEG signals
associated with normal and epileptic brain [10]. B-distribution
based Cohen class time-frequency method has been proposed
to investigate the nonstationary property of EEG signals for
seizure detection in newborns [11]. Several wavelet transform
with different wavelets has been utilized for the understanding
the time-varying frequency components of EEG signals
[12-14]. Recently, Hilbert-Huang transform based features has
been used for the classification of normal and epileptic seizure
[15].

Various nonlinear techniques such as correlation dimension,
largest Lyapunov exponent, Hurst exponent and approximate
entropy has been exploited for the analysis of EEG signals
associated with the different mental states [16]. In general, the
EEG signals are nonstationary and nonlinear. In order to
address both these variations, empirical mode decomposition
(EMD) based approach has been exploited for the
characterization of EEG signals. In a work, mean frequency
extracted from intrinsic mode functions (IMF) of EMD has
found to be useful in differentiation of seizure and seizure-free
signals [17]. In an another study, the instantaneous area of
Hilbert transformation of intrinsic mode functions obtained
from EMD has been used to analyze intracranial EEG signals
to detect focal temporal epilepsy [18]. Also, the energy
computed from the each IMF has been used for the
classification of normal and seizure signals [19].

In this work, a scheme based on approximate entropy and
empirical mode decomposition is proposed for the detection
epileptic seizures from electroencephalogram data recorded
from normal subjects and epilepsy patients. For this propose, a
standard publicly available database based on University of
Bonn is used.

Methodology

Database

In this work, a standard publicly available database is utilized
[20]. This database consists of both scalp and intracranial EEG
signals recorded from five healthy subjects and five epilepsy
patients respectively. These signals were recorded in the
epilepsy research community of University of Bonn, Germany.
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Figure 1. Examples of iEEG signals recorded during (a) non-seizure
and (b) seizure period.
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The entire dataset consists of five different sets (denoted A—E),
each containing 100 single-channel EEG signals of 23.6 s. Sets
A and B were acquired from the scalp electrodes from five
healthy volunteers with eyes open and closed, respectively
using standard 10-20 system. Signals in two sets namely D and
C were acquired in seizure-free intervals from five epileptic
patients in the epileptogenic zone and from the hippocampal
formation of the opposite hemisphere of the brain respectively.
Set E contains the ictal activity. Sets C, D, and E were recorded
using the special electrodes implanted in the brain. For this
study, the intracranial signals recorded from seizure free
intervals (D) and during seizures (E) are considered for the
analysis. Figure 1 shows the examples of iEEG signals of set D
and E is presented below.

Empirical mode decomposition

The empirical mode decomposition method is a data adaptive
and data-dependent method. This method does not require any
assumption about the stationarity and linearity of the signals.
Therefore, this method is a better choice for the analysis of
non-stationary and nonlinear signals such as EEG. The main
objective of the EMD technique is to decompose the nonlinear
and non-stationary signal x(¢) into a sum of intrinsic mode
functions (IMFs). Each IMF satisfies two basic conditions
namely, the number of extrema and the number of zero
crossings must be the same or differ at most by one and the
mean value of the envelope defined by the local maxima and
the envelope defined by the local minima is zero at any point
[21,22].

The necessary steps associated with the EMD algorithms is
given below

Detect the extrema (maxima and minima) of the signal x(?)

Compute the upper and lower envelopes en(?) and e;(?)
respectively, by connecting the maxima and minima separately
with cubic spline interpolation

em(t) +e l(t)

Determine the local mean as a(t) = 5

Extract the detail /(1) = x(2) —a(t)

Decide whether 4(¢) is an IMF or not by checking the two
basic conditions as described above

Repeat the first four steps and end when an IMF A (®) is
obtained.

Once the first IMF is derived, define c¢;(¢)=h(¢) which is the
smallest temporal scale in x(z). To determine the the rest of the
IMFs, generate the residue r(2)=x(t)-c(t), the residue can be
treated as the new signal and repeat the above illustrated
process until the final residue is a constant or a function from
which no more IMFs can be derived. At the end of the
decomposition [22], the original signal x(?) is represented as

M
x(t) = Z _, ¢;(t) +ry (D
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where M is the number of IMFs, c;(?) is the i IMF, and ry(?) is
the final residue.

Approximate entropy (ApEn)

Approximate entropy quantifies the regularity or predictability
of a time series. Unlike Shannon’s entropy, ApEn accounts the
temporal order of points in a time sequence and therefor it is
considered as a measure of randomness [23].

The necessary steps involved in the computation of ApEn are
provided below;

For a time series of length N:{x(i) <i > N}, a m dimension
vector is formed as

X' ={x@®, x(+1),.x(+m+1)}, i=12.N-m
+1

For every X™;, distance d[X™;, X™;] of X™; form X™; is defined
as

djj = d[X?", X;"] =Maxg s < m— 110l +k) —u(j+ k)|

For each vector Xmi, a measure that describes the similarity
between the vector Xmi and the other vector Xmj can be

N-m+1
My 1 E m_
constructed as €. (i) = T —— Q(dij T)

Lj=1
Where, is a Heaviside function and 1is given by
1 if z<0
o=
0 if z=0

The symbol » in equation represents a predetermined tolerance
value, defined as

r=k*std(x)

Where, £ is a constant (k>0) and std(.) is a standard deviation
of time series.

Function @m(r) is defined as

N-m+1
1 .
N—m+1zi_ In[C7'(D)]

=1

o™(r) =

Repeat the previous steps (1-4) to compute m+1

The approximate entropy is computed using the following
formula ApEn = @™(r)-d™*1(r)

Results and Discussion

Figures 2 and 3 show the IMFs of the non-seizure and seizure
signals shown in Figure 1. It is seen that signal of non-seizure
state have 12 IMFs whereas 10 IMFs are found in the case of
seizure state. Similar results are also observed for other signals.
The higher number of IMFs in non-seizure state is due to the
more non-stationary and nonlinearity of iEEG signals. Further,
it can be seen that the first IMFs are always highest frequency
components and the last IMFs are the lowest frequency
variations. Also, the sudden and abrupt fluctuations are seen in
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the IMF1 of non-seizure state in comparison with the seizure
state.
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Figure 2. Intrinsic mode functions of 23.6 seconds non-seizure iEEG
signal.
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Figure 3. Intrinsic mode functions of 23.6 seconds seizure iEEG
signal.

The ApEn extracted from the IMFs of iEEG signals associated
with non-seizure and seizure state is presented in Figure 4. It is
observed that the ApEn values are higher for non-seizure in
comparison with the seizure state. This higher value of ApEn
indicates higher complexity of signals. In general, the
complexity is expected to be lower for the signals that are more
regular, periodic, stationary and predictable. Higher complexity
corresponds to random, irregular and unpredictable signals.
The more random and irregular property may be associated
with the asynchronous neuronal firings of brain in non-seizure
period. The lower complexity observed in ictal period is due to
the seizure onset patterns such as high amplitude periodic
spikes, spike and wave activity and burst of high amplitude
polyspikes. Further, among different IMFs, the ApEn is found
to be higher in IMF1. It is attributed to the presence of high
frequency components in IMF1. It is seen that ApEn values are
gradually reduces with the number of IMFs being higher in
IMFT1 and lower in the last IMF.

In this study, the ApEn of the first eight IMF is compared for
the differentiation of non-seizure and seizure signals. The
mean ApEn of first IMF is found to be 0.6 in normal state of
epileptic brain and is reduced by 73% in the case of seizure.
Large overlaps are seen in the ApEns of first three IMFs.
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Further, these values are more scattered in comparison with
other IMFs. The standard deviation of first three IMFs are
found to be 0.2, 0.14 and 0.1 respectively, and these values are
higher. The percentage difference of ApEn is observed to be
78%, 129%, 165%, 95% for IMF2, IMF3, IMF4 and IMF5
respectively. From the six IMFs shown, the maximum value of
ApEn (0.80) is found to be in IMF1 and the minimum value
(0.0002) is seen in IMF2.Very small difference is observed in
the ApEn values of IMF7 and IMF8.
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Figure 4. Comparion of ApEn values, extracted from IMFs under
non-seizure and seizure state; (a) IMFI1, (b) IMF2, (c) IMF3, (d)
IMF4, (e) IMF 5, and (f) IMF 6.

A t-test is performed on the ApEn values of different IMFs to
determine the significance of difference in non-seizure and
seizure class. ApEn values of all IMFs except IMF7 and IMFS§
is found to be extremely statistically significant (p<0.0001).
IMF7 and IMF8 are observed to be statistically significant with
the probability value of less than 0.01. From the results based
on percentage difference and the significance test, IMF3 and
IMF4 appears to be perform better in the differentiation of non-
seizure and seizure class. The primary characteristics of
epilepsy are recurrent seizures. The pathological reasons for
these seizures are due to the sudden development of
synchronous neurnonal firing in the cerebral cortex. This
divine disease is one of the most common disorders of the
nervous system. It is estimated that about 33% of epilepsy
patients have seizures that are not controlled by anti-convulsant
medicine. Therefore, seizure analyses for the differentiation of
non-seizure and seizure class enable implantable devices to
intervene at right time to treat epilepsy [24]. The
nonstationary-nonlinear feature, ApEn based on IMF4 may be
useful for the separation of non-seizure and seizure class.
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Conclusion
In this study, empirical mode decomposition based
approximate entropy is proposed to differentiate the

intracranial EEG signals under non-seizure and seizure class.
For this purpose, 100 segments of non-seizure signals and 100
segments of seizure signals are chosen from the standard
publicly available database of University of Bonn, Germany.
These signals subjected to empirical mode decomposition and
approximate entropy for further analysis. The result shows that
the complexity is higher in non-seizure class indicating these
signals are higher non-stationary and nonlinear. Further, the
IMF4 based ApEn is found to give highest percentage
difference between the considered two classes. Also, the ApEn
values based on all IMFs except IMF7 and IMFS is observed to
be highly statistically significant. From this analysis and
results, it appears that IMF4 based ApEn could be used for the
seizure prediction applications.
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