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Abstract

Spectral or temporal features employed in computerized lung sound analysis should be statistically
significant and capable to distinguish the subjects accurately into respective disease categories,
regardless of their age, gender and demography. In this article the spectral features of five different
classes of lung sounds; stridors, wheezes bronchial, vesicular and crackles are estimated via an
automated method and evaluated for their statistical significance using Analysis of Variance (ANOVA)
and Fisher’s Class Separability Measure (FCSM). The spectral features included in this study are
median frequency, dominant frequency, maximum frequency, spectral roll off and spectral centroid. The
maximum and dominant frequencies and spectral centroid are identified directly from the lung sound
spectra. The median frequency and spectral roll off are computed from the Power Spectral Density
(PSD) estimate using an analytical method. Before computing the spectrum, the lung sound specimens
are preconditioned with offset elimination and normalization. The normalized specimen is windowed
with Hanning window to suppress the ripples induced in the spectrum during the computation of Fast
Fourier Transform (FFT). The pre-processing, estimation of the spectral features and their statistical
evaluation are performed in Matlab®. P-values of 0.0386, 0.7508, 0.0197, 0.055 and 0.6979 were observed
at a confidence level of 0.05, for dominant frequency, maximum frequency and median frequency,
spectral roll off and spectral centroid, respectively. The values of FCSM are 0.1242, 0.0192, 0.1498,
0.1112 and 0.0222, respectively and in compliance with ANOVA. The median frequency comparatively is
more significant than the other four. It is capable of discriminating the stridors and crackles.
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Introduction
The automated or computerized analysis of lung sounds gained
wide popularity soon after its inception itself because of its
objective nature. The ability of computerized lung sound
analysis to resolve the subjectivity inherent in the manual
auscultation paced its acceptance in clinical practice. The
signal processing methods which form the Skelton of the
computerized lung sound analysis are in fact powerful to
flexibly help the removal of the interferences like heart sounds
and artefacts to make the diagnostic interpretation reliable and
specific enough. In manual auscultation the clinicians look for
the presence of extra-frequency components in the lung sounds
and their relative strengths to reach a diagnostic conclusion. In
computerized lung sound analysis also, the diagnostic
interpretations are made based on the physical characteristics
of the lung sound specimens. These characteristic includes the
spectral, temporal or spectro-temporal features. Because of the
resemblance to the human method of audition, the spectral or
frequency domain features are comparatively of more
significance than the other two. However, the statistical
significance of the spectral features depends on how effectively
the qualitative behavioral pattern of the spectrum is translated

into numerical indices. Many researchers have tried to
represent the behavioral pattern of the lung sound spectra with
the help of reduced dimension of spectral features.

Ponte et al. [1] computed the maximum frequency of the lung
sounds via discrete pseudo Wigner-Ville distribution,
anticipating that the maximum frequency may help to
distinguish crackles generated by fibrosis from those generated
by the heart failure and pneumonia. However, it was not
possible to differentiate crackles generated by pneumonia from
those generated by heart failure by means of the maximum
frequency of the lung sound spectra. Generally, the frequency
domain features are extracted from the spectrum, computed
either through parametric or non-parametric methods. Gavriely
et al. [2] showed that the spectra of normal lung sounds
computed by Fast Fourier Transform (FFT) and Auto
Regressive (AR) model have the same characteristic pattern.
Usually, the features extracted from the spectrum, such as
bandwidth, dominant frequency, maximum frequency, quartile
frequencies and other statistical indices which account for the
qualitative attributes of the spectrum are equally helpful to
characterize the frequency domain representation of signals of
biological origin. Xie et al. [3] employed Multi- scale Principal
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Component Analysis (PCA) to represent the variability of the
Fourier power spectra of lung sounds. A Fourier spectrum was
used in Oud et al. [4] also. But, the use of Fourier spectra was
optimized by applying a power raising transformation
(involution). Masada et al. [5] obtained a sequence of power
spectra of lung sound epochs through FFT and computed the
component spectra by Independent Component Analysis
(ICA), from the overlapping sets of consecutive power spectra.
Waitman et al. [6] represented the lung sounds by their
averaged power spectral density, summed into feature vectors
across the frequency spectrum from 0 to 800 Hz.

Gavriely et al. [7] measured the average slope of the power
spectrum and the maximal frequency of lung sounds during the
inspiratory and expiratory phases individually, over the base of
the left and right lungs, inter-scapular region and right anterior
chest of healthy controls. This study just explored the spatial
variability of these frequency domain signatures rather than
their diagnostic feasibility. As a part of the investigations for
more comprehensive strategies to express the characteristics of
the lung sound spectra, the same author, Gavriely et al. [8]
observed that the amplitude spectrum of normal breath sounds
comprises two linear segments, corresponding to the low and
high frequencies, in the log-log plane and these segments can
be characterized by the corresponding regression lines. Slopes
of the regression lines and the amplitude and frequency
coordinates of their intersection were employed as the features
to represent the behavior of the spectra. It was reported that the
frequency at which this line crosses the zero dB level,
designated as the maximal frequency, is between 736 and 999
Hz during inspiration and 426 and 796 Hz during expiration,
with higher values in women than in men. Kawamura et al. [9]
calculated the ratio of the power of high and low-pitched
sounds from the FFT spectra of lung sounds, correlated it with
the Computed Tomography (CT) findings and suggested that
the ratio is useful for differential diagnosis of the pulmonary
disorders. As a base to this, decades before itself, Fenton et al.
[10] had reported that high frequency and high amplitude
peaks in the power spectra of respiratory sounds are symptoms
of wheezing. Furman et al. [11] also attempted to diagnose
bronchial asthma from the characteristics of the FFT spectra of
respiratory sounds. In compliment to this, Mazic et al. [12]
investigated the feasibility of power spectra of
phonopneuograms as the markers of wheezing in asthmatic
infants.

Xu et al. [13] analyzed the power spectra of vesicular
breathing, rales and wheezes with Band Selectable Fourier
Analysis (BSFA) to classify them. Dokur [14] used averaged
power spectrum components as the feature vectors for the
classification of bronchial, broncho-vesicular, vesicular lung
sounds, crackles, wheezes, stridor, grunting, squawks and
friction rub. Malmberg et al. [15] employed Self Organizing
Maps (SOM), making use of the features from the FFT spectra
of the lung sounds during the mid- inspiratory phase to classify
asthma, emphysema, fibrosis alveolitis and normal. The
strategy failed to distinguish breath sounds of asthmatics
without wheezing from those with crackles in fibrosing
alveolitis. Ono et al. [16] determined the dominant frequency

at the maximum lung sound intensity and the quartile
frequencies, from normal controls and patients with Interstitial
Pneumonia (IP) and evaluated the diagnostic specificity
offered by these frequency domain features. It was indicated
that the second and third quartile frequencies had been higher
in the IP than in controls, but the diagnostic specificity offered
by the quartile frequencies were inferior to that offered by the
auscultation. Xu et al. [17] noted that the vesicular lung sounds
from normal controls are different in their distribution of the
peak frequencies in the spectrum from the wheezes and rales
and the power spectrum of rales and wheezes contain more
high-frequency components and the vesicular lung sounds
contain more low-frequency components.

Charbonneau et al. [18] reported that high-frequency
components in the lung sound spectra increases directly
proportional to the air flow rate, in both normal and asthmatic
subjects. Schreur et al. [19] concluded that lung sound intensity
is lower in patients with symptom-free mild asthma than in
healthy controls, during expiration, specifically at low airflow
rates and the first and third quartile frequencies are higher in
asthmatics than in healthy controls during quiet expiration and
the variation of these quartile frequencies with respect to the
air flow rate is greater in asthmatic than in normal. Nakano et
al. [20] calculated the power spectra at various frequency
bands and mean airflow rates corresponding to each band, for
short epochs of breath sounds, to identify the frequency band,
correlated to the changes in the airway calibre. Jane et al. [21]
assessed the effect of bronchodilator in asthmatic via spectral
analysis of the lung sounds. Habukawa et al. [22] observed that
the highest frequency component in the inspiratory phase of
the lung sounds at the instant at which the airway resistance is
equal to two times of the baseline during the methacholine
inhalation challenge is greater than that before the challenge
and that after the inhalation of the bronchodilator.

Sovijarvi et al. [23] demonstrated that the median frequency
has the best repeatability among the quartile frequencies of
lung sounds in healthy subjects. Sovijarvi et al. [24] later
investigated the repeatability of the median frequency
estimated from lung sound spectra averaged over inspiratory as
well as expiratory phases of consecutive respiratory cycles.
Different from the healthy subjects; the repeatability of median
frequency was not noticeable in fibrosing alveolitis. Sanchez
and Vizcaya [25] studied the intra-subject repeatability of the
median frequency in normal adults. The median frequency was
computed from the spectral power of the lung sounds between
100 Hz and 2 KHz, extracted when the subject was allowed to
breathe through the pneumotachograph at a rate of 0.9-1.1
litres. Kanga and Karaman [26] compared the MF of
phonopneumograms of full term and premature infants with
those of normal adults and pointed out that the median
frequencies of term and premature babies are overlapping and
the normal lung sounds of newborns contain higher- frequency
components than those of adults. Gross et al. [27] concluded
that the relation between age, gender and median frequency of
lung sounds is not statistically significant. Hidalgo et al. [28]
reported, median frequency estimated from the average of the
amplitude spectrum of the inspiratory phase of consecutive
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breath sounds is different for children and adults and in
children the median frequency is correlated with height and
age.

Anderson et al. [29] and Spence et al. [30] reported that
median frequency is well correlated to Forced Expiratory
Volume in one second (FEV1) during histamine/ methacholine
challenge in asthmatic subjects. Whittaker et al. [31]
investigated correlation of median frequency with FEV1 on
asthmatic and control subjects after administration of
bronchodilator, salbutamol and suggested that the median
frequency is sensitive to the measurement frequency range and
unlikely to be used as a single marker of lung condition.
Malmberg et al. [32] reported a correlation of -0.853 with
p<0.001 between median frequency of tracheal expiratory
sounds and FEV1 during histamine challenge and subsequent
bronchodilation in asthmatics and healthy control subjects. It
had been suggested that the increase of median frequency
during histamine challenge is significantly larger in asthmatics
than in healthy controls. Malmberg et al. [33] in his another
endeavor appreciated the correlation between percentage
change in FEV1 and the percentage change in median
frequency of expiratory breath sounds in asthmatic children.
The author postulated that the median frequency of the mean
breath sound spectra recorded at the chest is higher in
asthmatics than in both the control subjects and the patients
with Chronic Obstructive Pulmonary Disease (COPD).
According to the study conducted by Malmbarg et al. [34] the
median frequency of lung sounds in patients with COPD was
not statistically different from control subjects. But, the median
frequency of recorded sound at the trachea in the asthmatics
was correlated to FEV1.

Among the recent developments in lung sound analysis,
Lozano et al. [35,36] tried to differentiate normal and
continuous adventitious lung sounds using instantaneous
frequency computed by Ensemble Empirical Mode
Decomposition (EEMD). In another recent study, Sengupta et
al. [37] demonstrated that the statistics of Mel Frequency
Cepstral Coefficients (MFCCs) are superior to the raw MFCC
coefficients, cepstral features and wavelet based methods, in
classifying normal lung sounds, wheezes and crackles. Bokov
et al. [38] suggested the feasibility of using spectral roll off for
the detection of wheeze in pediatric population. In contrary to
this, Tabata et al. [39] exhibited doubt on the ability of
dominant and quartile frequencies of lung sounds for detecting
air way narrowing in children and showed that spectrum curve
indices are better than them.

The literatures are not in unanimous agreement on the
statistical significance of the spectral features. The accuracy of
diagnostic decision and the specificity offered by the
automated diagnostic systems rely purely on the statistical
significance and the disease correlation of the elements in the
feature vector which feeds the classifier. Irrespective of the
classifier, the automated diagnostic system would perform well
if the features do have appreciable Seperability in the feature
space in terms of ‘between the class variability’ and ‘within the
class similarity’. Investigating the statistical significance of the

spectral or temporal features of the lung sounds with respect to
the age and gender of the subjects, the correlation between the
respiratory airflow rate and airway calibre, intra-subject
repeatability of the features and their spatial variability alone
do not help to devise an automated lung sound analyzer. Rather
than the primitive systems which do the binary like
classification of the lung sound specimens into asthmatics or
non-asthmatics, wheezes or non-wheezes and normal or
adventitious, systems which can classify the lung sound
samples into their respective classes accurately and can make
the diagnostic decision reliable, should come in place. Hence,
this article evaluates the statistical significance of five most
important spectral features such as median frequency,
maximum frequency, dominant frequency, spectral roll off and
spectral centroid of lung sounds and their Seperability in
feature space by using the specimens from five different
classes of lung sounds, stridors, wheezes, bronchial, vesicular
and crackles.

During the forthcoming discussions the mathematical
formulation for the computation of spectral features from the
lung sound specimens are detailed. Prior to this a brief
discussion on the pre-processing is incorporated. Following
this, the statistical significance of the computed frequency
domain features and their Seperability in feature space are
analyzed.

Methodology
Median frequency, dominant frequency, maximum frequency,
spectral roll off and spectral centroid of five different classes of
LS such as stridor, crackles, wheezes, bronchial and vesicular
are estimated and their statistical significance is evaluated
using Analysis of Variance (ANOVA) and Fisher’s Class
Seperability Measure (FCSM). The lung sound samples
corresponding to the said classes were collected from the web
sources, breathe.missouri.edu, depts.washington.edu,
impactednurse.com, littmann.com, meded.ucsd.edu,
tracheostomy.com and wilkes.med.ucla.edu. The lung sound
specimens are selected in such a way that the specimens
contain samples from normal (bronchial and vesicular),
continuous-adventitious (wheeze and stridors) and
discontinuous-adventitious (crackles), to make the analysis of
the statistical significance of the frequency domain signatures
more comprehensive.

To compute the spectral features of the lung sound specimens
they need to be transformed into frequency domain. But before
computing the spectrum, the lung sound specimens are
preconditioned with offset elimination and normalization. The
offset eliminated specimen,�0(�) = �(�)− 1� ∑� = 1� �(�) (1)
Given the x(n) is the lung sound specimen, sampled at a rate
1/fs and comprising N discrete samples,1≤ n ≤ N.

Since, the technical specification of the sensors used for the
acquisition of lung sounds and the level of amplification
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employed in each database remain unknown, to standardize the
amplitudes of the lung sounds, the samples were normalized to
a range between -1 and +1 as in (2).��(�) = ��(�)max ��(�) (2)
The spectrum of the normalized specimen is computed using
the FFT algorithm. The spectral resolution or frequency
resolution which is the ratio of the sampling frequency ‘fs’ and
the number of samples, ‘N’, significantly influence the
accuracy of spectral coefficients and the spectral or frequency
domain features extracted from the spectrum. Even though,
FFT allows fast computation of the spectrum, in FFT the
technical issues induced by inadequate spectral resolution
become too apparent, different from the direct computation of
Discrete Fourier Transform (DFT). While computing the
spectrum, because of poor spectral resolution, if the frequency
bin corresponding to one of the component frequencies is
absent, the spectrum appears to be spread between the nearest
available frequency bins, rather than a sharp and distinct peak
at a particular or single frequency bin. The spectral magnitude
of component frequencies which have equal magnitude in time
domain would not be equal.

Dominant frequency of a spectrum of signal is usually
identified based on the intuition that ‘dominant frequency’
corresponds to the largest peak in the magnitude spectrum. In
other words, the dominant frequency is identified based on the
relative spectral magnitude of the component frequencies. If
the spectral resolution is poor the frequency bin corresponding
to the largest peak in the magnitude spectrum need not provide
the dominant frequency.

The spectral resolution can be enhanced by increasing the
number of samples in the signal. One of the practical ways of
increasing the number of samples in the signal is ‘zero
padding’. The zero padding improves the spectral resolution by
interpolating intermediate bins in the frequency vector.
Unfortunately, zero padding drastically induces ripples to the
spectrum. The linearity property of the DFT implies, the
magnitude of the DFT of a spectrum of signals comprising
many component frequencies is equal to the algebraic sum of
the spectral magnitude of the individual frequency components
so that the ripples introduced by one of the frequency
components interfere with spectral magnitude of the
neighboring frequencies and hinders the relative spectral
magnitude. This issue becomes more significant when the
component frequencies are closely spaced.

Ideally, the spectral peaks appear only at the component
frequencies. The ripples turn to be a significant issue while
computing the maximum frequency component present in the
signal. Maximum frequency of a spectrum of signal is an
entirely different frequency domain feature from the dominant
frequency. Dominant frequency is the frequency component
contributing maximum power to the spectrum of signal and
maximum frequency is the highest frequency present.
‘Maximum frequency’ is a feature which express the band
width of the spectrum of signals.

To maintain adequate spectral resolution the number of
samples in the lung sound specimen is increased to at least two
times of its sampling frequency ‘fs’, through zero padding. The
lung sound specimens are windowed with Hanning window
prior to the computation of FFT to suppress the ripples which
could be induced in the spectrum during the computation of
FFT, because of the zero padding. Even though Hanning
window is employed here, Hanning and Hamming windows
offer similar spectral resolution. The normalized lung sound
signal after windowing,

xw(n)=xn(n)w(n) → (3)

where the Hanning window is given by,�(�) =0.54− 0.46cos(2��/� − 1) ��� 0 ≤ � ≤ (� − 1)0 ��ℎ������ (4)
Xw(n) is the lung sound signal after offset elimination,
normalization and windowing, obtained from the raw lung
sound signal. The spectrum of the windowed signal is
computed as,

�(�) = ∑� = 1� ��(�)�−�2���� , 1 ≤ � ≤ � ��� 1 ≤ � ≤ �
(5)
The first half of the spectrum from 0 to the Nyquist frequency
fs/2 is sufficient to identify the component frequencies, since
the second half is just a reflection of the first half. Hence, three
of the frequency domain signatures are estimated from the
half-length spectrum rather than its full length version. The
maximum and dominant frequencies can be identified directly
from the half-length spectrum. But, the MF is computed from
the Power Spectral Density (PSD) estimate. The PSD estimate
is computed from the half-length spectrum as,�(�) = �(�) 2��� , 1 ≤ � ≤ � (6)
�ℎ���, � = �2 + 1
As Nyquist frequency and DC do not appear twice, to conserve
the total power, the power spectrum is modified such that, the
modified power spectrum,��(�) = �(�), ��� = 1 �� � = �2�(�), ��ℎ������ (7)
The PSD estimate expressed in dB/Hz,

Q(k)=10logPm(k) → (8)

Distinguishing the median frequency of the lung sound spectra
simply from the PSD estimate is not possible. Hence, an
analytical technique to compute the median frequency from the
cumulative PSD estimate is employed here. The cumulative
PSD estimate,
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�(�) = ∑� = 1� ��(�) (9)
At the median frequency, the total power in the spectrum get
divided equally, such that the median frequency,�� = �(�) �� ��(�) = �(�)∑� = 1� ��(�) = 0.5 (10)
where Cn(i) is the normalized cumulative PSD estimate. The
frequency vector corresponding to the half-length spectrum,�(�) = ���� 0 < �(�) < ��2 , 0 < � < � (11)
which implies, at the median frequency ‘f(i)’,∑� = 1� ��(�) = ∑� = �+ 1� ��(�) = ∑� = 1� ��(�) (12)
The magnitude of the normalized form of cumulative PSD
crosses 0.5 exactly at the median frequency. In the automated
method employed in this article, the median frequency is
identified based on this intuition. The median frequency
reflects the band of frequency in which energy of the spectrum
is concentrated. It is a frequency domain signature which is not
influenced by the non-stationary behavior of the lung sound
signal. Hence, median frequency can be computed from the
spectrum of the whole discrete samples available, without
segmenting the signal into distinct epochs or considering the
inspiratory and expiratory phases separately. Spectral roll off
[40], another feature used in this article is the frequency below
which 95% of energy is concentrated. Analytically, it is the
frequency at which normalized cumulative PSD crosses 0.95.

For computing the maximum frequency, only the frequency
components with the spectral magnitude above the mean of the
spectral coefficients are deemed significant. The maximum
frequency in the lung sound specimen,�max = �� �� �� > �� ��� �(�) > 1� ∑� = 1� �(�) ∀� ≠ �
(13)
�� = ���� ��� �� = ���� , 1 ≤ � ≤ �, 1 ≤ � ≤ � (14)
Dominant frequency of lung sound spectra,

fd=fk if |X(k)|>|X(j)|, 1≤ j≤L, 1≤ k≤ L and k ≠ j → (15)

Spectral centroid (fc) is the sum of frequency values weighted
by relative spectral magnitude of each frequency component to
the total spectral magnitude. It is computed as [41],

�� = ∑� = 1� �(�) �(�)∑� = 1� �(�) (16)
The pre-processing of the lung sound specimens, estimation of
spectral features and statistical evaluation of the extracted
features are performed in Matlab®. The statistical significance

of the signatures is tested using ANOVA. Another metric used
to evaluate the significance of the features is FCSM [42]
denoted by ‘J’. It is the ratio of Between Class Scatter Metric
(SB) and Within Class Scatter Metric (SW),� = ���� , �� = (��− �)�(��− �), �� = ∑� = 1� (� − ��)�(� − ��),� ∈ �� (17)
where ‘K’ is the number of classes, ‘μ’ is the total mean of
feature values, ‘μi’ is the mean of feature values in the ith class,
‘Ci’.

Result and Discussions
The dominant frequency, maximum frequency and spectral
centroid are computed directly from the lung sound spectra.
Whereas, the median frequency and spectral roll off are
computed using an analytical method from the PSD estimate of
the lung sound signal. For visual evaluation, the spectrum of
crackle and its PSD estimate are furnished in Figures 1 and 2,
respectively, as an example. The numerical values of the
spectral features estimated from different classes of lung
sounds are furnished in Table 1. The numerical values of fm, fd
and fmax, fc and spectral roll off, extracted from five different
classes are further analyzed for their statistical significance
using ANOVA. The ANOVA tables of the spectral features for
different classes of lung sounds are depicted in Tables 2-6. In
ANOVA, the validity of certain ‘null hypothesis’ is tested. In
feature evaluation using ANOVA, the null hypothesis is, the
mean of the feature values of individual classes are equal and
the feature is not statistically significant or does not ensure
accurate classification. The alternate hypothesis is that the
mean of the feature values of classes are different and the
feature is statistically significant, favoring an accurate
classification. If the F-statistics is less than the critical value,
null hypothesis is true and features are not good enough.
Appreciably, for a statistically significant or good feature
which can offer an accurate classification results, the F-
statistics should be greater than the critical value and
sufficiently away from it. The p-value express the probability
that null hypothesis can be true. Consequently, the p-value
should be negligibly small for a good feature.

Table 1. Numerical values of median, dominant and maximum
frequency, spectral roll off and spectral centroid estimated from
different classes of LS.

S
No.

Specimen
Title

Maximum
Frequenc
y

Median
Frequenc
y

Dominant
Frequenc
y

Spectral
Roll off

Spectral
Centroid

1 Bronchial 1 2473 249 186.6 1155 849.6

2 Bronchial 2 940.7 14 13.87 28 1045.8

3 Bronchial 3 896.85 14 13.86 27 93.4

4 Bronchial 4 15734 407 54.72 560 708.4

5 Bronchial 5 1285.6 186 131 966 625
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6 Crackles 1 1439.8 32 18.12 108 910.3

7 Crackles 2 3284 31 14.54 115 258.6

8 Crackles 3 985.99 19 16.92 49 219.8

9 Crackles 4 4614.1 146 152.8 431 540.9

10 Crackles 5 801.65 33 18.07 123 279.4

11 Stridor 1 1291.9 176 39.34 547 397.8

12 Stridor 2 1669.2 496 552.56 576 454.5

13 Stridor 3 3771.1 568 570.6 705 710.2

14 Stridor 4 1300.2 199 17.7 990 503.1

15 Stridor 5 789.22 269 266.45 385 549.3

16 Vesicular 1 596.34 23 15.94 38 910.7

17 Vesicular 2 323.57 24 26.83 34 54.7

18 Vesicular 3 4753.5 213 50.73 347 528.1

19 Vesicular 4 4310.9 120 110.83 559 1282

20 Vesicular 5 323.57 24 26.83 34 54.7

21 Wheezes 1 3193.4 32 10.16 85 308.3

22 Wheezes 2 804.62 28 15.6 165 320.4

23 Wheezes 3 629.7 197 198.24 300 468.3

24 Wheezes 4 4643.6 320 50.8 509 624.9

25 Wheezes 5 934.77 30 10.1 85 184

Figure 1. Spectrum of the crackle.

For the dominant frequency, the F-ratio is 3.1 from Table 2.
But the critical value is 2.87 at a confidence level of 0.05. F-
statistics is outside the critical region so that the mean of the
dominant frequency of one of the classes could be different.
But F-statics lies very close to the critical value. The p-value of
0.0386 is an indication that the dominant frequency may not
offer appreciable diagnostic specificity. For maximum
frequency, the F-ratio is .48 from Table 3. But the critical value
is 2.87 at a confidence level of 0.05. F-statistics is inside the
critical region so that the mean of maximum frequency of all

the five of the classes could be equal in the worst case. The p-
value of 0.7508 is an indication that the maximum frequency
does not offer appreciable diagnostic specificity. For the
median frequency the F ratio is 3.75 from the Table 4. But the
critical value is 2.87 at a confidence level of 0.05. F-statistics is
outside the critical region so that the mean of the median
frequency of at least one of the classes could be different. But
F-statics lies very close to the critical value. The p-value of
0.0197 is an indication that the median frequency may be
helpful to distinguish certain lung sound classes. Spectral roll
off (F-statistics=2.78 and p value=0.055) and spectral centroid
(F-statistics=0.55 and p value=0.6979) are also statistically
insignificant. For dominant frequency, maximum frequency
and median frequency, spectral roll off and spectral centroid,
the values of FCSM are 0.1242, 0.0192, 0.1498, 0.1112 and
0.0222, respectively. FCSM is an unbounded statistics.
However, its value is expected to be amiably high for a good
feature. From FCSM values it can be observed that only
median frequency can be deemed statistically significant, in
compliance with ANOVA (Tables 5 and 6).

Table 2. ANOVA table of dominant frequency.

Source SS DF MS F Prob>F

Column 220287.4 4 55071.8 3.1 0.0386

Error 355293 20 17764.7   

Total 575580.4 24    

Table 3. ANOVA table of maximum frequency.

Source SS DF MS F Prob>F

Column 20672600 4 5168150 0.48 0.7508

Error 21580000 20 10790000   

Total 23647200 24    

The median frequency exhibits comparatively better statistical
significance than other features. But from ANOVA it cannot be
concluded that for which class of the lung sounds the median
frequency would be distinct from the other classes. Analysis of
the box whisker plot is informative in this context. The box
whisker plot of the median frequency of different classes of
lung sounds is furnished in Figure 3. From the box whisker
plot it is evident that except the crackles, the median frequency
of bronchial, stridors, vesicular and wheezes exhibit a broad
dynamic range. The numerical range of median frequency of
all the five classes is overlapping. It is difficult to distinguish
normal and adventitious lung sounds using median frequency
as a feature. However, the median frequency exhibits better
variability between stridors and crackles. The statistical
analysis of the frequency domain signatures would be
comprehensive only when the Seperability and inter-class
variability offered by these features are analyzed in feature
space. The feature plot of fm, fd and fc extracted from five
different classes of lung sounds, stridor, wheeze, bronchial,
vesicular and crackles is depicted in Figure 4. The feature plot
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makes it apparent that except the median frequency, spectral
roll off and dominant frequencies do have no contribution to
the Seperability of the lung sound classes in the feature space.

Figure 2. PSD estimate of the crackle.

Figure 3. Box whisker plot of median frequency of different classes of
lung sounds.

Dominant frequency is the strongest frequency component in
the lung sound spectra and maximum frequency is the highest
frequency component. The maximum frequency specifies the
frequency range of the lung sounds. But both of the signatures
do not exhibit appreciable statistical significance. The median
frequency indicates the band of frequencies in which the
energy of the lung sound spectra is concentrated. It is notable
that the statistical significance of the median frequency is
better than the other four features. Hence, features like Mel
Cepstral Coefficients (MFCC) which can account for the
qualitative behavior of the spectra and the distribution of
frequency components in the spectra would be hopefully better
than the distinct features like maximum and dominant
frequencies.

Figure 4. Feature plot of significant frequency domain signatures
extracted from different classes of lung sounds

Table 4. ANOVA table of median frequency.

Source SS DF MS F Prob>F

Column 261890 4 65472.5 3.75 0.0197

Error 349544 20 17477.2   

Total 611434 24    

Table 5. ANOVA table of spectral roll off.

Source SS DF MS F Prob>F

Column 968642.6 4 242160.6 2.78 0.055

Error 1742198.8 20 87109.9   

Total 2710841.4 24    

Normally, while investigating the statistical significance of the
features of the lung sounds, the inclusion criteria of the study
population would be very specific and constrained to a narrow
range. But to devise an automated lung sound analyzer,
features which can offer good Seperability and interclass
variability, regardless of the age, gender, ethnicity and
demography of the subjects should be employed. The spectral
and temporal features are highly correlated to these factors. In
this article, the lung sound specimens are carefully selected
such that each class contains the lung sounds from pediatric,
adolescent, male and female. Moreover, most of the literatures
address a binary classification problem. The existing literatures
mostly do a classification of lung sound signals into wheezes
or non wheezes, normal or adventitious, wheezes or crackles
etc. But a comprehensive automated strategy for lung sound
analysis should be able to classify the entire categories of lung
sounds, accurately identifying the underlying disease,
regardless of the demography of the subjects. The correlation
proven in literature between the air calibre and the frequency
domain signatures indicate that the signatures would be helpful
to identify only the obstructive pulmonary diseases.
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Many of the researchers involved in lung sound analysis make
use of the samples from the web resources for the validation of
their feature extraction and evaluation strategies. Most of the
data base lung sound signals are meant for auscultatory
training rather than applications in research. The reliability of
the samples from these web resources remains uninvestigated.
The statistical significance of the spectro-temporal features,
especially the frequency domain signatures depends purely on
the protocols used for the acquisition of lung sounds. The
statistical significance of the frequency domain signatures are
greatly influenced by the frequency response of the sensors
(either microphone or accelerometers) used for lung sound
acquisition and the cut off frequency of pre-filters. The very
low dominant frequency (Table 1) is a clear indication of
improper sensor placement. Heart sound interference is another
factor which diminishes the diagnostic utility of the lung
sounds. Hence, one should be careful enough and should
ensure that the standard signals used in feature evaluation and
selections are pre-processed adequately. This emphasizes the
need for thorough standardization in lung sound acquisition
and processing.

Table 6. ANOVA table of spectral centroid.

Source SS DF MS F Prob>F

Column 241360.6 4 60340.2 0.55 0.6979

Error 2175224.7 20 108761.2   

Total 2416585.3 24    

Conclusion
The diagnostic specificity of computerized lung sound analysis
always depends on the statistical significance of the features
employed. The methods for lung sound analysis available in
the literature which make use of the spectral features have
reported the statistical significance of the features based on the
study performed on a study population with very specific
inclusion criteria. Most of the literatures try to classify the lung
sound samples into two categories primitively like normal/
adventitious, wheezes/non-wheezes, wheezes/ crackles etc. The
correlation between airway calibre and the median frequency
of lung sounds established in literature just shows its utility in
the diagnosis of obstructive pulmonary diseases. But an
automated lung sound analyzer should be capable of
performing the diagnosis from multiple classes of pulmonary
disorders including the ventilatory and diffusion impairments,
regardless of the age and gender of the subject. Hence, the
statistical significance of the spectral features was studied on
multiple classes of lung sounds from subjects differing in age,
gender and other aspects, in this article. A standardized
framework for the extraction of the spectral features from lung
sounds, their statistical evaluation and feature selection was
demonstrated.

The median frequency, dominant frequency, maximum
frequency, spectral roll off and spectral centroid were extracted
from five different classes of lung sounds, stridors, wheezes,

bronchial, vesicular and crackles. The statistical significance of
these frequency domain signatures were evaluated using
ANOVA and FCSM. P-values of 0.0386, 0.7508, 0.0197, 0.55
and 0.6979 were observed at a confidence level of .05, for
dominant frequency, maximum frequency, median frequency,
spectral roll off and spectral centroid, respectively. For these
features, the observed values of FCSM were 0.1242, 0.0192,
0.1498, 0.1112 and 0.0222, respectively. The median frequency
comparatively was found to be more significant than all other
spectral signatures. Median frequency was capable of
discriminating the stridors and crackles. Features which
account for the behavioral pattern of the lung sound spectra
and carrying the information regarding the distribution of
frequency components in the spectra are necessary to have
accurate diagnostic decision from the lung sounds of subjects
with diverse demographics.
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