A comparative study of the neurophysiological remote effects of different resistive static facilitation techniques on the flexor carpi radialis H-reflex.

Mitsuo Arai¹,* and Tomoko Shiratani²

¹Department of Physical Therapy, Faculty of Medical and Health Sciences, Tsukuba International University, 6-8-33 Manabe, Tsuchiura City, Ibaraki 300-0051, Japan
²Department of Rehabilitation, Sonoda Second Hospital, Hokima3-3-3, Adachiku, Tokyo 121-0813, Japan

Abstract

Resistive static contraction facilitation technique applied by manual resistance using a proprioceptive neuromuscular facilitation pattern in the mid-range pelvic posterior depression technique (RSCPDT) or anterior elevation technique (RSCAET) with the subject on the affected side produces greater increase in range of motion of remote parts. However, few studies have provided evidences for neurophysiological remote effects of resistive static exercise that consider the direction of resistance force. The purpose of this study was to clarify the rebound effects of RSCPDT on the time-course of excitability of the flexor carpi radialis (FCR) H-reflex in comparison with RSCAET as an opposite direction of resistance force. Six healthy subjects were randomly assigned two groups: the RSCPDT (n = 3) and RSCAET group (n = 3) groups. Repeated FCR H-reflexes with small M-waves (1 Hz) were sequentially elicited in a row without interval for a period of 220 s. The repeated ANOVA revealed that neurophysiological rebound effects induced by RSCPDT on the FCR H-reflex cause a significant initial inhibition phase during RSCPDT and a significant subsequent facilitatory phase after RSCPDT compared to RSCAET. We named those phenomena as remote rebound effects (RRE). These results suggest that the neurophysiological RREs of resistive static contraction of pelvic muscles on the FCR H-reflex may depend on the direction of resistance. The RSCPDT is a specific resistive exercise to induce RRE.

Keywords: FCR H-reflex, rebound remote effect, resistive static contraction, resistive static facilitation, PNF

Accepted August 17, 2012

Introduction

Resistive static contraction facilitation technique applied by manual resistance using a proprioceptive neuromuscular facilitation pattern in the mid-range pelvic posterior depression technique (RSCPDT) or anterior elevation technique (RSCAET) with the subject on the affected side produces greater increase in active range of motion (AROM) and passive range of motion of remote parts such as upper shoulder and elbow joint than passive or static stretching methods in the patients with orthopedic impairments [2, 3] and in the patients with stroke patients [4]. Our previous study also showed that the remote effect of a static contraction by strong pinch force combined with the diagonal position of the shoulder joint on the improvement of the wrist joint range was significantly larger compared to those of neutral position combined with a weak pinch in normal subjects [5]. The after effects of resistive exercise on the remote parts may depend not only on degree of strength but also on the position during static exercise. Previous studies have suggested that the neurophysiological effects of exercise on remote parts depend on the direction of movement [6,7]. The neurophysiological rebound effects such as increased and decreased the flexor carpi radialis (FCR) H-reflexes with plantar flexion and dorsiflexion, respectively, are observed during voluntary foot oscillations [6], whereas the opposite effects are observed when the forearm is held in supination [7]. Specific exercises may facilitate the linkages between the arm and the trunk. However, there are few studies to determine the linkages between the arm and trunk. In addition, few studies have provided evidences for neurophysiological rebound effects of resistive static contraction that consider the direction of resistance force. The purpose of this study was to clarify the neurophysiological rebound effects of resistive static contraction that consider the direction of resistance force. The purpose of this study was to clarify the neurophysiological rebound effects of resistive static contraction that consider the direction of resistance force. Since H-reflex is difficult to measure in the wrist extensors or extensor digitorum, we selected the highly...
A comparative study of the neurophysiological remote effects.....

reliable FCR H-reflex [8] as an indicator of neurophysiological rebound effects. We performed each resistive static contraction facilitation technique to detect the influence of the relaxed FCR H-reflex, which provides a gross measure of the motoneuron pool excitability [9]. If the amplitude of the H-reflex is high, it is assumed that there is an increase level of excitation of the motoneuronal pool and vice versa.

Subjects and Methods

Six subjects, aged 21–31 y (mean, 26.3 y; standard deviation (SD), 3.9 y) and with no history of neurological illness, volunteered for this study. Exclusion criteria also included any injury to the extremities or back within the last year that required medical attention. All participants gave their written informed consent. This study was performed in compliance with the revised declaration of Helsinki.

Dominance was determined by asking the subject which arm they preferred to use when writing a name. All the subjects were right-hand dominant based on this criterion. Subjects were randomly assigned to one of two groups: RSCPDT group (n = 3), which took part in RSCPDT, or RSCAET group (n = 3) which took part in RSCAET.

Resistive exercise protocol

Each resistive exercise was induced by manual resistance applied by an experimenter, while other movement of the trunk and extremities was prevented. The experimenter stood behind the patient with his elbows locked in extension and placed his hands over the subject’s upper ischial tuberosity while in side-lying position in the RSCPDT group. Manual resistance was directed toward the sacroiliac joint (SIJ) over the upper ischial tuberosity in the RSCPDT group. In the RSCAET group, the experimenter stood behind the patient and placed his hands over the anterior superior iliac spine (ASIS) while in side-lying position. Manual resistance was directed toward the SIJ over the ASIS in the RSCAET group. The amount of resistance provided by the experimenter was between 2–3 kg during each resistive exercise. The duration of each resistive exercise was 20 s in each resistive exercise.

Verbal exercise cues were limited to the following: (1) for RSCPDT or RSCAET protocol, “keep your pelvic steady during exercise as possible as you can. Do not move your body during exercise and relax after exercise”.

H-reflex stimulation

While in the side-lying position, each subject was instructed to keep the arm completely relaxed with his/her right shoulder at an angle of 90 degrees and his/her right forearm immobilized in a cuff in a pronated position with wrist and fingers extended. During and after each resistive exercise, the subject maintained the side-lying position on their side in a dark, quiet room. We measured the FCR H-reflex of the right upper extremity in side-lying position during each resistive exercise and at rest before and after each resistive exercise. The H-reflexes were measured with an evoked potential measuring system (model MEB9100, Nihon Kohden Corp, Tokyo, Japan). We elicited H-reflexes in the FCR muscle using electrical stimulation of the median nerve in the cubital fossa. Electromyographic (EMG) responses were recorded from right FCR muscles using surface electrodes recording from bipolar surface electrodes over the muscle belly. The skin was cleaned with alcohol, and the area was rubbed gently using skin preparation gel (Skinpure; Nihon Kohden Corp., Tokyo, Japan) for removal of dirt, oil and dead skin to lower the impedance at the recording site was below 0.5 kΩ. Test stimuli were administered using a 1-ms pulse delivered through a pair of surface electrodes placed 1.5 cm apart over the belly of the FCR, with the cathode located proximal to the anode. EMG signals were recorded from the FCR with standard nonpolarizable Ag-AgCl surface disk electrodes (outer diameter 9 mm). An electrical stimulus with a rectangular pulse (1-ms duration) was delivered by a stimulator at a frequency of 1 Hz. A small M-wave size was maintained throughout the experiment to ensure that no displacement of the stimulation electrode occurred and that the effects were not due to changes in a reflex recruitment gain during the stimulus gain.

Experimental design

M-wave and H-reflex were obtained using 20 sweeps (20 repeated reflex responses) every 20 s in all conditions (conditions-C2 ~ C8) while stimulation current was concurrently measured for all experimental trials as shown in Fig. 1. We determined the steady intensity of stimuli necessary to elicit a large H-reflex with a small M-wave in each subject prior to resistive exercise in conditions-C1. Repeated H-reflexes and M-waves (1 Hz) were sequentially elicited in a row without interval for a period of 220 s. The period of 220 s was divided into 8 conditions (conditions-C1(80 s); conditions-C2 ~ C8 (20 s each)). Conditions-C1 (four trials; 80 s) represented the phase of rest; conditions-C2 (20 s) the phase of each resistive exercise; conditions-C3, -C4, -C5, -C6, -C7, -C8 (20 s each) represented the rest phase after each resistive exercise as shown in Fig. 1. The intensity of median nerve to induce H-reflexes with small M-waves was determined in conditions-C1, and this initial stimulus intensity was held constant for each subject during all of the experimental trials [10]. By repeating the experiment at several stimulus intensities and using the M-wave as a measure of the effective stimulus strength, H-reflexes occurring at various phases could be compared at equal stimulus intensities [10].

Parameter of excitability

For comparison, each H-reflex amplitude during and after
each resistive exercise (conditions-C2~C8) was normalized to the corresponding H-reflex recorded in conditions-C1 to reduce inter-subject variability. This H-ratio indicating the relative size of the H-reflex amplitude, was used as a parameter of motoneuron excitability. The peak-to-peak amplitude of each H-reflex in conditions-C1 served to determine the neurophysiological rebound effects of each resistive exercise.

Data analysis

1. A probability level of P < 0.05 was used to determine statistical significance.
2. The reliability of H-reflex was ensured by calculating the reliability of peak-to-peak H-reflex ratios, respectively, from 4 trials measured in conditions-C1 (Fig. 1: C1-1, C1-2, C1-3 and C1-4) using two-way analysis of variance (ANOVA) to derive ICCs.
3. Two-way repeated ANOVA was used to determine the time-course effects, group effects and interactions between the time-course and group with regard to the H-ratio. We used Bonferroni post-hoc analysis to determine whether statistically significant differences in the H-ratio occurred over time (conditions-C2~C8).

Results

The ICC(1,4) was 0.97 for the FCR H-reflexes, which indicated a high degree of consistency in conditions-C1. The time-course of the H-ratio is shown in Figure 2. A two-way repeated ANOVA showed that the time-course produced a main effect, but not for the group (F(1,5) = 3.75, p = 0.11 for the group; F(6,30) = 19.03, p = 0.000 for the time-course). The interaction between the group and time-course was also significant for the H-ratio (F(6,30) = 18.51, p = 0.000). Both a significant main effect of the time-course and a significant interaction between the group and time-course indicated that the H-ratio changed over the time-course, with the extent of change dependent on the group factor. Post-hoc tests using a Bonferroni analysis revealed that the H-ratio in conditions-C2 during RSCPDT was significantly reduced as compared with the H-ratio in all conditions during and after RSCAET as shown in Table 1. In contrast, the H-ratio in both conditions-C7 and -C8 after RSCPDT was significantly enhanced as compared with that in all conditions during and after RSCAET as shown in Table 1.

Discussion

The neurophysiological rebound effects of SCPD on the FCR H-reflex were significantly dependent on the time-course. The results of the repeated ANOVA suggest that neurophysiological rebound effects induced by RSCPDT-Ton the FCR H-reflex cause a significant initial inhibition.

Table 1. Significant differences between the two groups in the H-ratio

<table>
<thead>
<tr>
<th>Condition</th>
<th>RSCPDT</th>
<th>RSCAET</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>0.70*</td>
<td>0.442*</td>
</tr>
<tr>
<td>C3</td>
<td>0.69*</td>
<td>0.46*</td>
</tr>
<tr>
<td>C4</td>
<td>0.67*</td>
<td>0.47*</td>
</tr>
<tr>
<td>C5</td>
<td>0.63*</td>
<td>0.51*</td>
</tr>
<tr>
<td>C6</td>
<td>0.67*</td>
<td>0.47*</td>
</tr>
<tr>
<td>C7</td>
<td>0.68*</td>
<td>0.47*</td>
</tr>
<tr>
<td>C8</td>
<td>0.71*</td>
<td>0.43*</td>
</tr>
</tbody>
</table>

(*: significant difference)
Further research is needed to compare the brain activation of RSCAET, which may be correlated with brainstem activities (fMRI) and motor evoked potential (MEP). The methods such as functional magnetic resonance imaging (fMRI) and motor evoked potential (MEP).

Presumable causes of RRE may be coordinate patterns of extremities such as central pattern-generators (CPGs) [14,15]. Triggering of RRE of RSCPD T may be correlated with the activation of load receptors of central pattern-generators (CPGs), which can determine the choice of appropriate coordinated pattern according to the proprioceptive input arising from muscles, skin, joints and tendon [14,15]. In our previous study, we found neurophysiological rebound effects induced by RSCA ET on reproducible extensor digitorum communis long-latency evoked potentials (>150 ms), which may reflect the excitability of neural circuits in the brainstem when considering the latency period. Thus, the neurophysiological rebound effects of RSCAET may be correlated with brainstem activities. Further research is needed to compare the brain activity induced by different resistive static contraction facilitation technique with that induced by other methods such as functional magnetic resonance imaging (fMRI) and motor evoked potential (MEP).

References

Abbreviations: RSCPDT = Resistive static contraction of posterior depression technique; RSCAET = Resistive static contraction of anterior elevation technique; FCR = flexor carpi radialis; AROM = active range of motion; RRE = Remote rebound effects

*Correspondence to:

Mitsuo Arai
Department of Physical Therapy
Faculty of Medical and Health Sciences
Tsukuba International University
6-8-33 Manabe, Tsuchiura City
Ibaraki 300-0051
Japan